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To Whom It May Concern: 
 
This submission is based off of our work accepted to the Ninth International Conference on Pervasive 
Computing (PERVASIVE 2011) (see correrate-pervasive11.pdf). We believe there is significant changes 
compared to our conference submission. We have added the following to the paper: 
 
  - An updated evaluation of our method with respect to existing methods. We did a search of the space 
of parameters to find the best for each method and have updated our evaluation as a result. 
  - We include a new analysis of the features via feature selection. This tells how which features of our 
method are best used which is important for energy measurements. 
  - We include a new dataset of participants which we analyzed to understand if our method would 
work. One of the assumptions in our original paper was that a user needs to be walking for a spefied 
amount of time and we did not have a proper analysis if that is possible. This also means we have 
implemented the walking classifier which was also another missing piece. We have included this 
analysis now. 
 
As such, we believe this work consitutes a "significant enhancement" to our conference paper. 
 
We have revised the initial submission to address all the comments provided by the reviewers, and 
have described those changes in the response to reviewers file. 
 
Thank you, 
 
  The Authors 
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> Reviewer #1: This paper extends the work by Lester et al. [8]. about the determination of the fact 
that two sensors are carried by the same person (or not). Lester in [8] considered only sensors that 
were attached to the same part of the body whereas the authors of this paper take in consideration the 
generic case of sensors attached to different parts of the body. 
>  
> The paper is well-written and sound from a technical point of view. The evaluation is convincing and 
rigorous.  
>  
> However, the classification using SVM should be clarified. Do you train/use the SVM separately for 
each feature? If you consider different thresholds separately, how do you use the various thresholds? 
Do you classify an event when all the values are over/under a certain value? 
>  
> More detailed comments: 
>  
> Section 1 
> - "Second, the phone and sensor devices must be able...": I suggest to avoid to mention this fact here. 
Maybe add this on the future work section. It breaks the "flow" of the paper. 
 
Agreed. We have moved this as a final point in the discussion section. 
 
> - "We noted how existing solutions do not necessarily solve the problem and called for further 
research": this is unclear. In my opinion, you are addressing the strong version of the problem here. 
Actually, this classification in weak and strong versions might be questionable. I am wondering if you 
want to avoid to stress this fact too much in the paper. 
 
We are actually solving the weak version of this problem since we can only tell if 2 sensors are on the 
same body and not whose body they are on. We've updated this particular part to emphasize this fact 
and make it clear what we're solving and why it is useful to solve the weak version of the one-body 
authentication problem. 
 
> Section 2 
> - "The sensor node might contain...": An alternative is to just detect the fact that the accelerometers 
register some patterns that can be associated to the fact that the person is wearing the device. 
 
While this is true, if we want to perform retroactive authentication then we need a perfect way of 
detecting when the device is in use. It's not clear how to acceleration data to do this since the 
acceleration of person being stationary is equivalent to the device not being worn and stationary. 
 
> - "...reasonable assumption. ^1" -> "...reasonable assumption^1." 
 
Fixed. 
 
> - "if a sensor node is moved from one body to another...": this is feasible if you use the strap. By the 
way, this is a good motivation for having a "sensor" in the strap an not considering the detection of the 
state "worn/not worn" through the accelerometer. 
 
Exactly. This is the reason we want a strap as we mention in the rebuttal to the first point in this 
section. 
 
> Section 3 
> - "similar accelerations": correlated? Think about a person running. In my opinion some acceleration 
intensities on some axes are different. 
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True, but because we're on Earth we all experience acceleration in the direction towards it. 
 
> - "should experience a similar vertical acceleration": in my opinion this is different. Movements 
towards the earth are different. 
 
Movements towards the earth may be different but we're trying to exploit the fact that bipedal 
locomotion when walking forces the hip to follow a sine curve because one leg must be picked up at a 
time. 
 
> Section 4 
> - "orientation-ignored" -> "orientation-agnostic" 
 
Done. 
 
> - "to get a final a measure": rephrase this 
 
Done. 
 
> - "the size of the signals with no overlap": what do you mean here? 
 
This is has been rephrased. 
 
> - "the window of a specific feature A": this is not the window in my opinion. 
 
It is a window, but we've rephrased this to be more clear. 
 
> - "A^1...": here you should define A^j and not A^1. 
 
Changing this would be confusing because $j$ is already used to signify a particular feature vector 
$F_j$. $A^1$ is clear because it is selection the column (i.e. one of the features) from a window of 
feature vectors. 
 
> - "a model that is the coherence threshold for each feature": this is unclear. How many dimensions 
did you consider? 
 
We have reworded this to say that we train a model mapping feature coherencies to labels. 
 
> - "given a trained SVM...": this is unclear. How do you compose the various features? 
 
There are no features to compose. A SVM can learn the hyperplane separating examples of n-
dimensions. Explaining how an SVM works out of scope, however the gist of it has been explained. 
 
> - "by examining a window of classifications over time": this is unclear. Maybe: a series of 
classifications over time. 
 
Changed. 
 
> - "two classifications positive and the third classification is negative": "two classifications are positive 
and the third one is negative". 
 
Changed. 



 
> Section 6 
> - "partitions" -> "divides" [in order to avoid repetitions] 
 
Changed. 
 
> - "true feature coherence" and "false feature coherence": I suggest to use different names since this 
might be confusing (it might be confused with "false positive" and "false negative"). 
 
It shouldn't be confusing since these terms are used to define what a false positive and false negative 
are. 
 
> - "For comparison's sake...": you might want to add here that it is difficult to identify the thresholds 
for classification here. 
 
It is difficult to identify the threshold as this is precisely the point of using an SVM. The hyperplane that 
maximally separates the true and false feature coherences (which the SVM learns) is the threshold. 
 
> - I suggest to insert confidence intervals in Figure 10.A. 
 
This would make the graph unnecessarily busy since there are already three curves stacked on top of 
each other. One can also infer the confidence intervals from Figure 5, even though this that particular 
figure isn't smoothed. 
 
> - "Although the features we are computing are not necessarily expensive to compute": remove "we 
are computing" in order to avoid a repetition. 
 
Changed. 
 
> - "The feature selection algorithm indicated that mean, mean absolute deviation...": A PCA analysis 
might be useful. It is also important to add how you derived these observations (i.e., add more details 
and explanations). 
 
Using PCA could be useful but the method is also valid. PCA would only tell us those features with the 
most variance without actually classifying the samples while out method run classification over 
subsets of the features (as described). Subset selection (with correlation-based metric), as describe, is 
a standard technique for feature selection. 
 
> - "we would like know" -> "we would like to know" 
 
Changed. 
 
> - "This means more more than half" -> "This means than half". 
 
Changed. 
 
> Section 7 
> - "Mayrhofer et al. [3]": I am not sure that [3] is really a related work. It is an application of [3]. You 
might say that your method can be used in a scenario similar to [3]. 
 
It is related because if two sensors can extract the same key from the accelerometers, then they must 
be on the same body. We've added a sentence to clarify this. 



 
> Section 8 
> - "signal"->"signals" 
 
Not necessary to change. 
 
> - "is it" -> "it is" 
 
Not necessary to change. 
 
> - "these kind" -> "these kinds" 
 
Changed. 
 
> - this section contains an excellent discussion, I really liked it. 
 
Thanks! 
 
> Section 9 
> - "when given": when  
 
Changed. 
 
> Bibliography 
> - The year of the publications listed in the bibliography is missing. 
 
Fixed. 
 
> ---------- 
> Reviewer #2: This paper describes a novel problem in the mobile healthcare domain and provides a 
solution to the weak version of the one-body authentication problem. While the problem introduced is 
very novel, the technical depth of the solution is not clear and many assumptions also seem to be 
nontrivial to be realized. Here are more detailed comments: 
>  
> (1)It assumes that every sensor has an accelerometer, which is hard to realize.  
 
We don't think it's hard to realize. Existing sensors might not have them, but it wouldn't be infeasible 
for new sensors to include them. In fact, it might even provide a benefit. For example, a blood pressure 
sensor might use the accelerometer to take measurements when the user's arm is stable. 
 
> (2)It assumes that each sensor node can detect its own attachment and removal, which is nontrivial 
to realize.  
 
Most sensors already include a strap and it wouldn't be unfeasible to use this strap to detect 
attachment and removal as we explain in the paper. 
 
> (3)If there is strong interference (or suffering jamming attack), packets will be lost and hence 
mistakenly treated as "unbinding". This needs to be addressed. 
 
This is true, however, mitigating such attacks are outside the scope of this paper, and in fact this is 
generally a hard problem. Our solution, as described, is to simply retry authentication until successful. 
 



> (4)Since walking is required for this solution to work, senior people or people under under 
healthcare will not benefit from this design. They have limited mobility for satisfying this 22 minutes 
continuous walking requirement. 
 
This is true and we have discussed this in Section 8 (Discussion). 
 
> (5)I can see that reference [8] contributes a lot to this paper, while the authors just use one sentence 
in conclusion to state that they are different without giving any details. I'd prefer to see detailed 
statement about the novelty of this paper compared with reference [8]. 
 
Indeed our method is inspired by [8] as we state, however we believe is reasonably clear how our 
method differs from [8] as we describe in the method section. 
 
> (6)According to section 4.4., it seems that a lot of training is needed for different body locations. This 
seems very costly. 
 
It is costly, but this can be done offline. We've added this point to the discussion. 
 
> (7)SVM may be too computational and energy costly for it to be used in body sensor networks, even 
in smartphones. Experiment data is needed to convince readers that it works efficiently in 
smartphones.  
 
This is already discussed this in Section 8 (Discussion). 
 
> (8)The solution seems very costly (accelerometer seems to be sampling all the time), I am not sure 
whether this will work. The evaluation should include the cost evaluation and energy evaluation. 
 
This is already discussed this in Section 8 (Discussion). 
 
> (9)How will the walking classification accuracy impact the result? 
 
Walking classification accuracy, as described in the paper, using an existing method is 98% so it could 
have no impact on our results. However, even if the accuracy where lower, it would only impact the 
number of times we could perform authentication and not the authentication method itself. 
 
> ---------- 
> Reviewer #3: This paper tackles a very interesting and unique problem, determining when wearable 
sensors are not on the same body.  They accomplish this by calculating correlation between sensors 
and using a support vector machine to learn appropriate correlation thresholds to output the decision 
of same body or not. 
>  
> There are several features of this paper that are particularly appealing.  The goal is unique, the 
approach is reasonable and sound, and the results are promising.  I particularly like that the authors 
compare their approach to another reported in the literature.  This is not found often in pervasive 
computing and that is a big step in the right direction. 
> 
> The choice of the seven basic features is indeed well supported from the literature.  A large number 
of other features have also been tested by groups such as Intel.  Would performance be further 
improved by including the large set and using PCA to find the subset that is most discriminating (which 
can address the dimensionality eduction problem discussed in the paper)? 
 



It would be interesting to include more features and use PCA to choose from this larger feature set. 
This is future work, however. 
 
 
> The work is still somewhat early in that the approach focuses on one activity movement and is 
evaluated in a scripted setting.However, it is a good first step. 
> One aspect of the paper that I feel could be improved is to not just report the success of the approach 
but to evaluate when and how it might fail. 
> I would like to see a confusion matrix to get a start in this direction. 
 
A confusion matrix wouldn't provide any more information since our classification is binary. If there 
were more than 2 classes, then this would be helpful. 
 
> I would also like to see characteristics of the participants.  Age, gender, and height can all affect 
movement. 
 
Perhaps, but we explicitly chose able-bodied participants. Correlating age, gender, and height with 
classification accuracy would require a substantially larger population which we don't currently have. 
 
> Under what conditions is the approach most likely to fail?  With similar size participants?  With 
certain placement of sensors?  I would very much like to see this addressed in the revised version of 
the paper. 
 
As above, this kind of analysis would require a dataset with a much larger population, which we don't 
currently have. As such, we've left this for future work. 
 
> Your references are missing years, please add these. 
 
Fixed. 
 
> ----------- 
> Reviewer #4: The paper proposes a solution to a very interesting and important problem. It 
addresses the question of whether the sensors are on the same body. The paper is well written and is 
clear in stating its assumptions and contributions. The experiments conducted in the paper are 
satisfactory. 
>  
> - There is something between page 18 and 19. The pdf reader gets stuck. It would be good to rectify 
this problem during the final submission. 
 
The only fix to this problem is rasterizing the vector graphic, which seem unsuitable. If necessary, we 
can fix this. 
 
> ---------- 
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Abstract

In an open mobile health (mHealth) sensing system, users will be able to seamlessly pair sensors
with their cellphone and expect the system to just work. This ubiquity of sensors, however,
creates the potential for users to accidentally wear sensors that are not paired with their own
cellphone. Our method probabilistically detects this situation by finding correlations between
embedded accelerometers in the cellphone and sensor. We evaluate our method over a dataset of
seven individuals with sensors in various positions on their body and experimentally show that
our method is capable of achieving an accuracy of 85%.

Keywords: Personal Health Sensing, Same-Body Authentication, Body-Area Networks,
mHealth Security

1. Introduction

Mobile sensing of the human body is becoming increasingly pervasive with the advent of
personal devices capable of processing and storing large of amounts of data. Commercial devices
like the FitBit [1] and BodyBugg [2] allow a person to collect nearly continuous data about his
or her health. The FitBit, for example, allows a person to track one’s own fitness and sleeping
patterns by wearing an accelerometer on the waist.

Typically these devices are highly specialized, end-to-end solutions, but we imagine the sen-
sors in these products becoming commodities and inter-operating with a device most people
carry with them everyday: cellphones. A person could wear several sensors of varying types
(e.g., blood pressure monitor, pulse oximeter, pedometer, blood glucose meter). Because of the
physiological requirements, or comfort, these sensors will necessarily be attached at different
locations on the body. We imagine these sensors wirelessly communicating with a person’s cell-
phone, which would store and aggregate all data coming from the sensors. In fact, this scenario is
feasible today, and there are purchasable medical and fitness sensors capable of communicating
to cellphones via Bluetooth.

There are many security issues, not to mention privacy issues, with this scheme. How does
the cellphone authenticate valid sensors? How do sensors discover the presence of the cellphone,
without exposing their own presence? How does the user pair sensors with the cellphone? What
types of encryption are employed to maintain confidentiality and integrity? How do we balance
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david.f.kotz@dartmouth.edu (David F. Kotz)
Preprint submitted to Pervasive and Mobile Computing March 9, 2012

*Manuscript
Click here to view linked References

http://ees.elsevier.com/pmc/viewRCResults.aspx?pdf=1&docID=1458&rev=1&fileID=53949&msid={EC4FA73C-EE9F-4871-8D1D-952C74800447}


privacy and usability? We focus our attention on one specific challenge: how can we verify that
a suite of sensors are attached to the same person?

Suppose Alice and Fred, a health-conscious couple living together, each decide to buy a
fitness-monitoring sensor. The instructions indicate that each should “pair” their respective sen-
sor with their own cellphone. Pairing ensures, through cryptographic means, that a sensor is only
able to communicate with a specific cellphone. One day, when Alice and Fred go for a run, Alice
unknowingly wears Fred’s sensor, and Fred wears Alice’s sensor. As they run, thereby remaining
in communication range, Fred’s cellphone will be collecting data about Alice, but labeling the
data as Fred’s and placing it in Fred’s health record, and vice versa. This problem, a result of
the one-to-one pairing model, is even more likely as the number of sensors grows. The implicit
assumption when pairing is that the sensors paired with a cellphone will not be used by anyone
else but the user of the cellphone.

Our goal is to make life easier for people like Alice and Fred. Although Alice and Fred buy
identical sensor devices, Alice should be able to strap on either device and have her cellphone
recognize which device is attached to her, automatically creating the phone-device association
without an explicit pairing step. Similarly, if Alice and Fred jointly own another sensor device,
either may use the sensor at any time, and again the correct cellphone should detect which body
is wearing the sensor and receive the data into the correct person’s health record.

To achieve this vision, we must solve one of the problems identified. That is, Alice’s phone
must be able to determine which sensors are attached to Alice’s body, ignoring sensors that may
be in radio range but not attached to Alice. In this paper we specifically address this challenge.

To address the first challenge, the sensor device must somehow attest (to the cellphone) which
body is wearing the sensor at the current time. Ideally, the phone would analyze the data coming
from the sensors to see whether it identifies the wearer by some biometric measure. However,
not all types of sensors, or sensor locations, produce data that is suitable for biometric identity
verification. Thus we propose the following compromise: every sensor device will include an ac-
celerometer sensor in addition to its primary sensor (ECG, blood pressure, etc.). Accelerometers
are cheap, so this is a relatively inexpensive addition; instead of biometric identity verification
with a wide variety of sensor data, sensor placement, and usage conditions, we only need to find
correlations for the accelerometer data that answers the question: are the devices in a given set
all attached to the same body?

We recently [3] formalized this problem as the “one-body authentication problem,” which
asks: how can one ensure that the wireless sensors in a wireless body area network are collecting
data about one individual and not several individuals? We identified two variants of this problem.
The strong version of this problem requires identifying which person the sensors are attached
to, whereas the weak version of this problem simply requires determining whether the sensors
are on the same body. We noted how existing solutions do not necessarily solve the problem
and called for further research. Thus, we now aim to provide a solution to the weak one-body
authentication problem; given such as solution, one might solve the strong one-body problem for
one of the sensors in a set, and be able to extrapolate the verification to all of the sensors on the
body. Solving the weak one-body authentication problem is useful because it is not necessarily
the case that all sensors can solve the strong one-body authentication problem. It is unclear,
for example, how to identify a user based on temperature readings alone. However, should a
temperature sensor include an accelerometer and be able to use our algorithms to determine it
is on the same body as a sensor that can identify the user, then the temperature sensor can also
prove it was on that specific person’s body via a transitive relation.

Our paper is organized as follows. In the next section we describe our model. In the third
2



section we briefly describe our approach and hypothesis as to why we believe our approach will
work. In the fourth section we describe, in detail, our method. In the fifth section we describe the
data we collected as well as our collection method. In the sixth section we evaluate our method.
In the final sections, we discuss related work and distinguish our work from earlier approaches,
and provide some discussion about our method’s limitations and about some potential future
work.

2. Model

We imagine a world where personal health sensors are ubiquitous and wirelessly connect to
a user’s cellphone. Thus, there are two principle components in our system:

• One mobile node (e.g., the user’s cellphone) per user.

• Many sensor nodes (e.g., blood glucose, pedometer, electrocardiography).

We assume that mobile nodes communicate wirelessly with sensor nodes. Sensor nodes are
also capable of communicating wirelessly with mobile nodes but have limited computational
resources relative to the mobile nodes. Additionally, sensor nodes have the ability to detect when
they are attached to a user (although they will not know to whom). The sensor node might contain
a circuit that is completed, for example, when the user straps a sensor node onto their body and
the two ends of a necklace or wrist-strap come into contact. Finally, we also assume each sensor
node, and the mobile node, has an accompanying triaxial accelerometer of the same type (so that
their readings may be directly compared). Since accelerometers are tiny, cheap, and require little
energy to operate, this is a reasonable assumption1.

2.1. Binding

“Binding” occurs when a user wishes to use a sensor node. The following happens:

1. The user straps the sensor node to their body, thereby turning it on.
2. The sensor node detects that it was applied, and broadcasts its presence.
3. The mobile node receives the broadcast, thereby binding it with the sensor node, and labels

that sensor node as unauthenticated.

Binding is like pairing, but without the need for user intervention. In a pairing scenario,
the user is usually required to enter a shared key on one of the devices. Binding does not have
this requirement. When a sensor node is bound to a mobile node, the sensor node enters an
unauthenticated state.

1The Freescale MMA845xQ line of accelerometers, for example, cost $0.95 (in quantities of 100K) and consume
“1.8 microamps in standby mode and as low as 6 microamps in active mode” [4].
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2.2. Authentication

“Authentication” is a process, initiated by the mobile node, for verifying which of the mobile
node’s bound sensor nodes are on the same body. Once a sensor node is authenticated, the mobile
node will record sensor data from that node; until then, the data will be ignored. (As it may take
some time for authentication to succeed, in some implementations the mobile node may buffer
the incoming data received between the moment of binding and the moment of authentication,
recording the data only once authentication is assured. This “retroactive authentication” of the
early data is feasible because of our assumption that a sensor node can detect its own attachment
and removal; if a sensor node is moved from one body to another before it was authenticated on
the first body, the unbinding and rebinding events will clear the buffer on the first body’s mobile
node.)

To achieve authentication, our protocol requires an algorithm that is able to decide whether
two streams of data are originating from sensor nodes on the same body. That is, given a stream of
accelerometer data from a sensor node, the algorithm examines the correlation between a sensor
node’s data stream and the mobile node’s data stream, with the requirement that the two streams
should correlate well only when both the mobile node and the sensor node are on the same body.
The algorithm should return true if and only if the two data streams are well correlated and false
otherwise. We present the details of our algorithm in Section 4.

Procedure 1 provides an overview of the process for the mobile node to authenticate sensor
nodes. Because our method depends on recognizable acceleration events, our algorithm performs
authentication only when the user is walking. The mobile node records acceleration data using
its internal accelerometer for t seconds. Simultaneously, it asks the other sensor node to send
it acceleration data for the same duration. The duration required depends on the level of con-
fidence desired; a shorter duration may lead to more incorrect results (false positives and false
negatives), but a longer duration makes the approach less responsive after the person first puts on
the sensor. It then runs our algorithm, called AreCorrelated, to determine whether its internal
acceleration data correlates with the sensor node’s acceleration data. Only when the accelerome-
ter data correlates well does the mobile node begin to record that sensor node’s other sensor data
(e.g., electrocardiography data).

2.3. Unbinding

Unbinding occurs when a user removes a sensor node. In the ideal case, the following hap-
pens:

1. The user unstraps the sensor node from their body.
2. The sensor node detects that it was removed and notifies the bound mobile node of this

fact.
3. The mobile node acknowledges this notification, thereby unbinding it with the sensor node.
4. Upon receipt of this acknowledgement (or upon timeout), the sensor node turns off.

A sensor node may lose power or go out of range of the mobile node, during this process
or prior to the user unstrapping the sensor node. Thus, the mobile node periodically pings each
sensor node (not shown in Procedure 1); if the sensor node does not reply (after some timeout
period), the sensor node is likely not on the same body, and the mobile node treats it as unau-
thenticated and unbound.
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Procedure 1 Authenticating sensor nodes, from the mobile node’s perspective
Notation:
B: set of bound sensor nodes, initially empty
Ai: acceleration data from sensor node i, where i = 0 is the mobile node’s acceleration data,
and i > 0 are sensor nodes.
Record(t): read mobile node’s accelerometer for t seconds
Recv(b, t): read sensor node b’s accelerometer for t seconds
AreCorrelated(x, y): determine whether acceleration data x and y
————————————————–

1: while { true } do
2: if b := NewSensorNodeDetected() then
3: B := B ∪ b
4: {Mark sensor node b as unauthenticated }
5: end if
6: for b ∈ B do
7: if Disconnected(b) or Timeout(b) then
8: B := B \ b
9: else if d := RecvData(b) and IsAuthenticated(b) then

10: RecordData(b, d) { Save b’s data d in our health record }
11: end if
12: end for
13: if UserIsWalking() then
14: for b | b ∈ B and not IsAuthenticated(b) do
15: { The next two lines are accomplished in parallel }
16: A0 := Record(t)
17: Ab := Recv(b, t)
18: if AreCorrelated(A0, Ab) = true then
19: {Mark sensor node b as authenticated }
20: { Tell sensor node b to send sensor data }
21: end if
22: end for
23: end if
24: end while
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3. Approach

Our goal is to determine whether a sensor node is on the same body as a mobile node receiv-
ing the sensor node’s data. That is, we provide a solution for the weak one-body authentication
problem. Our solution could be used as the first step in a strong one-body authentication solution
by first verifying that all the sensors are on the same body, then using some subset of the sensors
to provide strong one-body authentication (i.e., via some biometric one of the sensors could de-
termine) to all the sensors on the body. To maximize the generality of our solution, we require
each sensor to have an accompanying accelerometer.

Our intuition is that if sensors are on the same body, then (at a coarse level) all of the sensors’
accelerometers experience similar accelerations. If a user is seated, or lying down, then there
is not much information we can extract from the accelerometer data to make the determination
that a suite of sensors are on the same body. There are a variety of activities that cause bodily
acceleration, but we focus on walking. When walking, a human body is largely rigid in the
vertical direction. Although our limbs do bend, we hypothesize that the vertical acceleration
(i.e., the acceleration relative to gravity) experienced by sensors placed anywhere on a walking
body should correlate well. As one foot falls, that side of the body experiences a downward
acceleration due to gravity, followed by an abrupt deceleration when the foot contacts the ground.
Sensors on one side of the body should experience a similar vertical acceleration, while sensors
on the other side of the body will experience the opposite. We should expect positive correlation
for one side of the body, and an inverse correlation on the other side. Of course, this observation
is complicated by the fact that it is difficult to extract the vertical acceleration component without
knowing the orientation of the sensor. Furthermore, although the signal can be very noisy, the
accelerations due to walking are likely to dominate the accelerations due to intra-body motion
(such as arm swings or head turns) and we should be able to reliably make a determination that
the supposed suite of sensors are on the same body.

Fortunately, there is already an existing body of work that shows how to do activity recogni-
tion given user-annotated data [5], and even on a mobile-phone-class device [6]; these techniques
are particularly good at detecting when a user is walking. Our approach, therefore, is to detect
periods when a user is walking by monitoring the mobile node’s accelerometer data periodically;
when the data indicates the user is walking, we use Procedure 1 to collect accelerometer data
from the sensors. (In Section 8 we discuss users who cannot walk.)

Lester et al. [7] provide a solution the one-body authentication problem, but only for sen-
sors that are carried in the same location on the body. They also propose using accelerometers
attached to each sensor and measure the coherence of the accelerometer data. “Coherence mea-
sures the extent to which two signals are linearly related at each frequency, with 1 indicating
that two signals are highly correlated at a given frequency and 0 indicating that two signals are
uncorrelated at that frequency” [7]. By looking at the coherence at the 1-10Hz frequencies (the
frequency range of human motion), they can experimentally determine a threshold (e.g., coher-
ence > 0.9) at which it is appropriate to deem two sensors as located on the same body.

We extend Lester et al. [7] to sensors carried at different locations on the body – wrist, ankle,
and waist – by using features often used for activity recognition. We then extract the pairwise
coherence of features for the sensors on the same body. Given these coherences, we can train a
classifier and use it to determine whether the alleged set of sensors are on the same body. We
train our classifier to be as general as possible by using data collected from several individuals;
the same model can then be used by all users for all sensor devices. We describe our method in
more detail in the following section.
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Figure 1: Five seconds of magnitude data for each position on the body for one user

4. Method

As stated previously, we assume each sensor node has an accompanying accelerometer; our
method uses only the accelerometer data. Specifically, consider a signal s sampled at some
frequency such that:

s = {(x1, y1, z1), (x2, y2, z2), . . .}
where xi, yi, and zi are the three axes of the instantaneous acceleration, relative to gravity, at
time i.

Because sensors might be mounted in different orientations, or might be worn in different
orientations each time they are worn, we discount orientation by using the magnitude of the
acceleration. Figure 1 shows that the magnitude exposes the overall walking motion well. Thus,
we compute the magnitude of all three axes for all samples in s:

mi =
√
x2i + y2i + z2i

This gives us the rate of change of speed over time for that particular sensor node.

4.1. Feature Computation
We partition this orientation-agnostic signal {m1, . . . , } into non-overlapping feature win-

dow lengths w. For each feature window j = 0, 1, . . . comprising {mjw+1, . . . ,mjw+w}, we
extract seven common features (mean, standard deviation, variance, mean absolute deviation,
inter-quartile range, power, energy); collectively, these seven values form the feature vector
Fj = (f1j , f

2
j , . . . , f

7
j ).

We chose these features primarily because others [8, 9] have used these features successfully
to detect physical activities, and we hypothesize they would similarly be useful for our problem.
If they can capture the physical activity of walking and we examine the correlation of these
features, we should expect them to correlate if and only if they are attached the same body.
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4.2. Coherence
Coherence is a measure of how well two signals correlate in the frequency domain. More

precisely, it is the cross-spectral density of two signals divided by the auto-spectral density of
each individual signal. Like Lester et al. [7], we approximate coherence by using the magnitude-
squared coherence:

Cxy(φ) =
|Sxy(φ)|2

Sxx(φ)Syy(φ)

In the above, x and y are the signals, Sxy is the cross-spectral density between signals x and
y, Sxx is the auto-spectral density of signal x, and φ is the desired frequency. Cross-spectral
density is calculated by the Fourier transform of the cross-correlation function. If x and y are
well correlated at some frequency φ, then Cxy(φ) should be close to 1.

Because we are interested in many frequencies, we compute the normalized magnitude-
squared coherence up to some frequency φmax:

N(x, y) =
1

φmax

∫ φmax

0

Cxy(φ)dφ

We chose φmax = 10 because, as Lester et al. notes, “human motion rests below the 10Hz
range” [7].

In addition, to compute the cross-spectral density over different frequencies, it is necessary
to window the signals x and y. We choose a window of length equal to one-half of the size of
the signals with no overlap between adjacent windows.

4.3. Feature Coherence
Given two sets of feature matrices A = (F1, F2, . . .) and B = (F1, F2, . . .) with entries

Fj as described above, we want to determine how well A and B are correlated. Here, A and
B represent the feature matrices extracted from the accelerometer data of the mobile node and
sensor node respectively.

We apply coherence to the feature matrices in the following manner. For some window length
c (the feature coherence window), we compute the normalized coherence of A and B as such:

NAB
k =

{
N(A1

k...k+c, B
1
k...k+c), N(A2

k...k+c, B
2
k...k+c), . . . , N(A7

k...k+c, B
7
k...k+c)

}
whereA1

k...k+c =
{
f1n ∈ A : k ≤ n < k + c

}
is the window of c samples from a specific feature

of A. That is, we take each feature (i.e., a column of the matrix) of A and the corresponding fea-
ture of B, and compute the normalized coherence using c samples (i.e., the rows of the matrix).
At this stage, we are left with a matrix of normalized coherences for each feature and window k.

Because we want to capture how the two signals are related over time, the coherence window
c should be sufficiently large to capture periodicities in the features. Because the typical walk
cycle is on the order of seconds, it is advisable to chose a coherence window on the order of
several seconds.

4.4. Supervised Learning and Classification
To account for the many positions a sensor node might be placed on the body, we collect

data from several locations. In our method, we compare the mobile node’s accelerometer data
to each other sensor node’s accelerometer data. That is, the mobile node acts as a reference ac-
celerometer, to which every other sensor node must correlate using the method described above.
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For a given set of locations and one reference location, we compute the feature coherence of
each location (i.e., A in the above) relative to the reference location (i.e., B in the above). In
our experiments, we compute the coherence of the right wrist and waist; left wrist and waist; left
ankle and waist; and right ankle and waist. When we do this for one user, this yields feature
coherences of the sensor on the same body, and we can label them as such. To yield feature
coherences of sensors on different bodies, we take pairs of users and mix their locations. For
example, at the waist and left hand there are two possible ways to mix up the sensors: Alice’s
waist and Fred’s left hand, Fred’s waist and Alice’s left hand. By mixing locations for any pair
of users, it is possible to compute an equal number of feature coherences that are and are not on
the same body, labeling them as such.

Given a set of feature coherences and their respective labels, we can train a classifier to learn
a model that maps a feature coherence to a label. We employ support vector machines (SVMs)
for this task since, once trained, they are good at predicting which label a given feature coherence
is associated with. An SVM accomplishes this task by finding the hyperplane with the largest
separation between the set of training feature coherences that are on the same body, and those
that are not on the same body. In our experiments, we trained a support vector machine with a
radial basis kernel using LIBSVM [10].

Given a trained SVM, we can use it to classify whether a given feature coherence is on the
same body. That is, at the window the feature coherence was computed, the support vector
machine can determine if the sensor node is on the same body as the mobile node. The SVM
does so by determining on which side of the hyperplane the test feature coherence lies.

4.5. Classification Smoothing
The classification method described above makes an instantaneous classification of a feature

coherence for that particular coherence window. It is, however, possible to boost the classification
rates by examining a series classifications over time. For example, if over the course of three
classifications, two classifications are positive and the third one is negative, we can use a simple
voting scheme to smooth over these mis-classifications. In the example, because the majority of
the classifications are classified as on the same body, we assume the sensor node is on the same
body for that classification window. We can empirically determine the best window by varying
the window and choosing the one that yields the best classification rates.

5. Dataset

We collected a set of acceleration data, from several test subjects wearing sensors in several
locations on their body, to use as training data (for the model) and to use as test data for (for
our evaluation). We used WiTilt (version 2.5) accelerometers [11]. We followed the user with a
laptop as they walked around a flat, predetermined course. The laptop was used to synchronize
the accelerometer readings sent via Bluetooth by the WiTilt nodes.

We collected roughly 2.5 hours of acceleration from 5 accelerometers sampled at 255Hz from
seven users for a total of 13 hours of acceleration data. The average user walked for 22 minutes
while wearing 5 accelerometers (waist, left wrist, right wrist, left ankle, right ankle). We chose
the waist (specifically, the right pocket), because it represents a common location for the mobile
node (cellphone). Of the likely locations for medical sensors (arms, legs, chest, head) we chose
the wrists and ankles for our experiments because (as extremities) we expect they would raise
the most difficult challenge for our method. Table 1 gives more detailed information about how
much data was collected for each user.
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User Time Samples Features
1 18.75m 288017 9000
2 29.95m 460047 14375
3 21.03m 322962 10092
4 19.50m 299553 9361
5 20.40m 313215 9787
6 28.55m 438484 13701
7 19.01m 291974 9123

Avg 22.46m 344893 10777

Table 1: Time spent walking, total acceleration samples, and number of features extracted for each user. On average,
each user walked for 22 minutes while carrying 5 accelerometers.

6. Evaluation

We evaluate how well our method performed for each location, at the wrists only, at the
ankles only, on the left side of the body, on the right side of the body, and at all locations. For
each experiment we used only the data from that location, or type of location, for training and
for evaluation; for example, in the “left leg” case we train on (and test on) the accelerometer data
from the left ankle in comparison to the data from the waist. In neither the learning process nor in
the operation of our system was the data labeled as to which location produced the acceleration
data. We varied the coherence window size from 2 to 16 seconds.

Using these datasets, we performed two types of cross-validations to evaluate the accuracy
of our method. The first cross-validation we performed was a simple 10-fold cross-validation.
A k-fold cross-validation divides the dataset into k partitions, trains the classifier over k − 1 of
the partitions (the training set) and classifies the remaining partition (the testing set), repeating
this procedure for each partition. This type of cross-validation will tell us how well our classifier
generally performs since it will classify every sample in the dataset. The second cross-validation
we performed is a variant of leave-one-out cross-validation we call leave-one-user-out cross-
validation. A leave-one-user-out cross-validation leaves an entire user’s data out as the testing
set and trains the classifier using the remaining data. We then test the classifier using the left-out
user’s data, repeating this procedure for each user. This type of cross-validation will tell us how
general our classifier is. Ideally our classifier would not be user-specific, and would perform well
in the case of a never-before-seen user.

We define a true feature coherence as a feature coherence computed from a sensor node and
mobile node on the same body, and a false feature coherence as a feature coherence computed
from a sensor node and mobile node not on the same body. A positive classification means the
classifier determined that the given feature coherence indicates the sensor node and mobile node
were on the same body, while a negative classification means the classifier determined that the
given feature coherence indicates the sensor node and mobile node were not be on the same
body. It follows, then, that a true positive occurs when a true feature coherence is classified as
positive, and a true negative occurs when a false feature coherence is classified as a negative. A
false positive occurs when a false feature coherence is classified as positive, and a false negative
occurs when a true feature coherence is classified as negative.

We present the accuracy, precision and recall for each possible scenario. Accuracy is the sum
of true positives and true negatives over the total number of classifications. Accuracy tells us
how well our classifier is doing at classifying feature coherences. Precision is the number of
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true positives over the total number of positive classifications. Precision tells us how well our
classifier is able to discriminate between true and false positives. Recall is the number of true
positives over the sum of true positives and false negatives. Recall tells us how well our classifier
classifies true feature coherences.

In all of our experiments, we chose a feature window size of 17 acceleration magnitudes with
no overlap so that each second may be divided evenly and thus yield 15 features per second. We
present results using our dataset for both our method and the method used in Lester et al. [7] for
sake of comparison.

6.1. Our Method

We ran a 10-fold cross-validation using the data from all users and for each of specified loca-
tion plotting accuracy (Figure 2), precision (Figure 3) and recall (Figure 4) for various window
of samples. The results show how the choice of coherence window size affects the accuracy,
precision and recall. A smaller window is more desirable because the coherence window size is
directly proportional to the window of accelerometer data that needs to be transmitted to the mo-
bile node, and wireless communication is typically expensive. However, a smaller window will
not capture the periodicity of walking. According to Figure 2, a 6–8 second coherence window,
or about 90–120 feature values, performed the best and minimized the communication overhead.
In such cases our method was about 70–85% accurate.

In general, as the coherence window increases accuracy, precision and recall briefly climb
but eventually settle. The plots also show that the method was more accurate for the legs than for
the hands, which is not surprising because the legs have more consistent motion behavior during
walking than do the hands, particularly across users. The right leg (or left hand) seemed to do
better than the left leg (or right hand, respectively), perhaps because the waist accelerometer was
always carried in the right pocket, and most people swing their hands in opposition to their legs.
When the hands and legs were combined, as in the left-body and right-body cases, this effect was
cancelled out and the results of both were fairly similar to the all-body case.

In Figure 5, we ran a leave-one-user-out cross-validation for each user with a fixed coherence
window of 8 seconds. The accuracy, precision, and recall for all users are nearly identical, thus
providing some evidence that our trained model is not specific to any user, and can in fact be
used to predict a never-before-seen user.

6.2. Lester et al. Method

For comparison’s sake, we implemented the method described in Lester et al. [7], after ex-
tending it to use a support vector machine for determining the threshold instead of choosing an
arbitrary threshold. Figures 6 and 7 shows that their method performs well on shorter window
lengths, but degrades for longer windows. At each method’s best, our method is 8% more ac-
curate, 5% more precise, and has 12% better recall. The boost in recall is important since that
means our method is better suited for detecting when sensors are on the same body as opposed to
when they are not. In terms of generality (i.e., the leave-one-user-out cross-validation), Figures 5
and 9 show similar gains in terms of accuracy, precision and recall.

Lester et al. [7] do present results for “devices at other locations on the body, including ac-
celerometers on the wrist, placed in one or both pockets, in a backpack, and in a fanny pack.”
These placements, however, are in the same relative location and therefore not comparable. Fur-
thermore, we evaluated the scheme over longer time intervals, and averaged the results for a
specified window.
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Figure 2: A 10-fold cross-validation of our method. Accuracy was computed across all users for each of the specified
locations while varying the coherence windows. The feature window was fixed to 17 samples as this yielded the best
results.
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Figure 3: A 10-fold cross-validation of our method. Precision was computed across all users for each of the specified
locations while varying the coherence windows. The feature window was fixed to 17 samples as this yielded the best
results.
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Figure 4: A 10-fold cross-validation of our method. Recall was computed across all users for each of the specified
locations while varying the coherence windows. The feature window was fixed to 17 samples as this yielded the best
results.
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Figure 5: A leave-one-user-out validation of our method for each user as well as the average across all users. The
coherence window was 8 seconds as this yielded the best results.
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Figure 6: A 10-fold cross-validation of the Lester et al. method. Accuracy was computed across all users for each of the
specified locations while varying the coherence window.
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Figure 7: A 10-fold cross-validation of the Lester et al. method. Precision was computed across all users for each of the
specified locations while varying the coherence window.
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Figure 8: A 10-fold cross-validation of the Lester et al. method. Recall was computed across all users for each of the
specified locations while varying the coherence window.
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Figure 9: A leave-one-user-out validation of the Lester et al. method for each user as well as the average across all users.
The coherence window was fixed to 4 seconds as this yielded the best results.
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Figure 10: A smoothed leave-one-user-out cross-validation of the specified method. Average accuracy, precision and
recall was computed by varying the smoothing window and averaging across all users. The coherence window was fixed
to 8 seconds for our method and 4 seconds for the Lester et al. method as this yielded the best results.

6.3. Classification Smoothing

We now return to the leave-one-user-out experiments, as they most closely model how the
method would be used in practice. In these experiments, for each user left out (the testing set),
we used the model trained on all other users’ data to predict the testing set. Now, instead of
instantaneous prediction, we use a simple majority vote to smooth over classifications and plot
how well this smoothing performed for a given window size of classifications.

Figure 10(a) shows the average accuracy, precision, and recall over all users for varying clas-
sification windows with a fixed coherence window of 8 seconds, while Figure 10(b) show similar
statistics but for a fixed coherence window of 4 seconds. These specific coherence windows were
chosen because the algorithms performed best with that much data. Our method benefits slightly
from classification smoothing as does Lester et al.’s method. This result tells us that our method
makes sporadic mis-classifications that can be marginally reduced with smoothing. Like any
smoothing scheme, one must strike a balance between the size of a smoothing window and the
desired classification rates. For our method, a 40 second smoothing window, or 5 feature coher-
ences, modestly boosts our instantaneous classification rates by 3%, precision by 2% and recall
by 6%. Thus the real gain in smoothing amounts to a boost in recall.

6.4. Feature Analysis

Although the features are not necessarily expensive to compute, it is still important to mini-
mize the amount of data that needs to be communicated. On typical sensor platforms, wireless
communication can be an order of magnitude more expensive than computation for the same
number of bits. Thus we can select a subset of features that provide the highest classification
rates and ignore those features that contribute little to the classification rate. For example, we
compute both the standard deviation and variance, but because standard deviation is simply the
square root of the variance we would expect one of these computed features should be elimi-
nated. To accomplish this feature selection, we employed a standard correlation-based feature
selection with a greedy hill-climbing algorithm to select candidate subsets. We evaluated each
subset using a 10-fold cross-validation over all locations and users with a fixed coherence win-
dow of 8 seconds. The feature selection algorithm indicated that mean, mean absolute deviation
and power provide the bulk of the classification rate while variance contributes some as well.
The other features contribute little or nothing to the classification rate.
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User Total Walking Count Min Mean Median Max Std
1 49.8h 62.0m 37 10.0s 100.5s 47.5s 475.0s 106.1s
2 69.9h 61.0m 46 15.0s 79.6s 58.8s 360.0s 69.9s
3 24.6h 63.2m 40 10.0s 94.8s 46.2s 297.5s 91.1s
4 49.8h 133.0m 93 7.5s 85.8s 47.5s 477.5s 93.2s
5 67.8h 77.5m 115 7.5s 40.4s 27.5s 292.5s 40.9s
6 65.1h 31.5m 29 7.5s 65.1s 55.0s 227.5s 52.3s
7 84.4h 48.2m 53 17.5s 54.6s 30.0s 172.5s 44.5s

Avg 58.8h 68.1m 59 10.7s 74.4s 44.6s 328.9s 71.1s
All 411.5h 476.4m 413 7.5s 69.2s 40.0s 477.5s 75.0s

Table 2: Statistics for each user about their particular walking habits. The first column, Total, is the total time in hours
the user carried the device. The next column, Walking, is the total time in minutes the user spent walking according to
our classifier. Count represents the number of the times the classifier detecting walking, while Min, Mean, Median, and
Max represent the length, in seconds, of the smallest, average, middle, and largest walking intervals respectively. Std is
the standard deviation of all walking intervals in seconds. The Avg row represents the average over the columns above,
while the All row represents the concatenation (i.e., aggregation) of all users together as one.

6.5. Authentication Intervals

Since we require at least 8 seconds of acceleration data when a user is walking (or 40 seconds
if we want the boost smoothing), we would like to know how many times a day our system could
perform authentication on average. To accomplish this, we continuously collected acceleration
data from several users using an accelerometer placed in their pocket. Each user was given a
Shimmer [12], which continuously collected acceleration data, and was asked to carry the device
at all times except when they were sleeping or performing an activity that could harm the device
(e.g., showering, swimming, or working out).

We collected a total of 411 hours of acceleration data from seven students who each carried
a single accelerometer that sampled at 100Hz. On average, a user carried the accelerometer for
58 hours. Table 2 gives more detailed information about each user. In addition to this dataset,
we also collected a one-hour training dataset consisting of mixed activities.

To classify walking intervals, we use the features described by He et al. [13]. They observe
that there is a period of weightlessness a person experiences while performing activities like
running or walking. They show how 6 features (mean peak height, mean weightless length,
mean peak interval, mean weightless interval, ratio of peak number to weightless number, and
ratio of weightless length to window length) can be used to achieve 98.54% walking classification
accuracy for an accelerometer placed in a user’s trouser pocket. They suggest extracting these
features for every 5.12 seconds of data (with 50% overlap between windows), so we extracted
the described features for each 5 second window of acceleration data with 50% overlap. Then
we used the training dataset, computed the features of that dataset, and trained a naive-Bayes
classifier, which was then used to classify a window of features for each user. To improve results,
we smoothed over classification results using a simple majority voting for every 3 classifications.

Figure 11 shows the acceleration intervals that were classified as walking for each user. On
average, a user walked for 74 seconds per interval however the median walking interval length
was 44 seconds. This means more than half of all classified walking intervals were at least 40
seconds long.

Figure 12 shows the distribution of walking interval lengths for all users. The distribution of
walking interval lengths tends to cluster towards shorter lengths of 60 seconds or less. However,
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Figure 11: Walking classification for each user for the whole time that they carried the sensor. According to the classifi-
cation method, users walked for 74 seconds on average and in total walked an average of 2.3% (1.9% aggregated) of the
collection period.
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there do exist enough walking intervals greater than 40 seconds for each user. Thus we would be
able to perform authentication with smoothing for the given population.

7. Related Work

Mayrhofer et al. [14] provide a solution to exchange a cryptographic key between two devices
by manually shaking the two devices together. They use the method described in Lester et al.
[7] to determine whether two devices are being shaken together. But, as they notice, coherence
“does not lend itself to directly creating cryptographic key material out of its results” [14]. To
extract key material they extract quantized FFT coefficients from the accelerometer data to use
as entropy for generating a key. One could imagine apply this technique to our acceleration
data, however it is unclear if it would still work. Our problem is made difficult by the fact that
the accelerometers are not being shaken together but are attached to a body and will therefore
experience less-correlated accelerations.

Kunze et al. [15] provide a method for determining where on a body a particular sensor is
located. They detect when a user is walking regardless of the location of a sensor, and by training
classifiers on a variety of features (RMS, frequency range power, frequency entropy, and the sum
of the power of detail signals at different levels) on different positions on the body they can use
the classifier to determine where on the body the sensor is located. We seek to provide a method
that determines whether a suite of sensors is located on the same body without having to use
multiple classifiers for different body locations. According to our experimental results, knowing
the location a priori provides no significant classification benefit.

Kunze et al. [16] provide similar methods to account for sensor displacement on a particular
body part. This problem is difficult primarily because “acceleration due to rotation is sensitive
to sensor displacement within a single body part” [16]. To alleviate this problem, the authors
observe that “combining a gyroscope with an accelerometer and having the accelerometer ignore
all signal frames dominated by rotation can remove placement sensitivity while retaining most
of the relevant information” [16]. We choose to limit our approach to accelerometers; although
the inclusion of a gyroscope might increase accuracy, it would also increase the size, cost, and
energy consumption on each sensor device.

Sriram et al. [17] provide a method to authenticate patients using electrocardiography and ac-
celeration data for remote health monitoring. While electrocardiography has proven to be useful
for authentication, they observe that these methods do not perform well in the real world because
physical activity perturbs the electrocardiography data. By employing an accelerometer to differ-
entiate physical activities, they can use electrocardiography data from those physical activities to
authenticate patients. We both make the observation that “the monitoring system needs to make
sure that the data is coming from the right person before any medical or financial decisions are
made based on the data” [17] (emphasis ours). Our work is complementary since it is necessary
to establish that accelerometer is on the same body as the sensor used to collect electrocardiog-
raphy data. Their method extracts 50 features from the electrocardiography and accelerometer
data and uses these features to train two types of classifiers, k-Nearest Neighbor and a Bayesian
Network, whose output can be used for identification and verification. We follow a similar pro-
cedure except that we work exclusively with accelerometer data, again, to reduce the complexity
and cost of the solution. We also look at the correlation between sensors, whereas they assume
there is a prior profile of the patient’s combined electrocardiography and accelerometer data.
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Walking Interval Length Distributions (5s window, 50% overlap)

 0
 2
 4
 6
 8

 10
 12
 14

 50  100  150  200  250  300  350  400  450  500

C
ou

nt

Walking Interval Length (s)

User 1

Less than 40 seconds (14)
Greater than 40 seconds (23)

 0
 2
 4
 6
 8

 10
 12
 14

 50  100  150  200  250  300  350  400  450  500

C
ou

nt

Walking Interval Length (s)

User 2

Less than 40 seconds (17)
Greater than 40 seconds (29)

 0
 2
 4
 6
 8

 10
 12
 14

 50  100  150  200  250  300  350  400  450  500

C
ou

nt

Walking Interval Length (s)

User 3

Less than 40 seconds (17)
Greater than 40 seconds (23)

 0
 2
 4
 6
 8

 10
 12
 14

 50  100  150  200  250  300  350  400  450  500

C
ou

nt

Walking Interval Length (s)

User 4

Less than 40 seconds (35)
Greater than 40 seconds (58)

 0
 2
 4
 6
 8

 10
 12
 14

 50  100  150  200  250  300  350  400  450  500

C
ou

nt

Walking Interval Length (s)

User 5

Less than 40 seconds (79)
Greater than 40 seconds (36)

 0
 2
 4
 6
 8

 10
 12
 14

 50  100  150  200  250  300  350  400  450  500

C
ou

nt

Walking Interval Length (s)

User 6

Less than 40 seconds (11)
Greater than 40 seconds (18)

 0
 2
 4
 6
 8

 10
 12
 14

 50  100  150  200  250  300  350  400  450  500

C
ou

nt

Walking Interval Length (s)

User 7

Less than 40 seconds (31)
Greater than 40 seconds (22)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 50  100  150  200  250  300  350  400  450  500

C
ou

nt

Walking Interval Length (s)

All Users

Less than 40 seconds (204)
Greater than 40 seconds (209)

Figure 12: The distribution of walking interval lengths for all users and the aggregation of all users. Features were
extracted every 5 seconds with 50% overlap. The aggregated distribution tends to skew heavily towards shorter walking
intervals for this particular set of users.
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8. Discussion and Future Work

There are a variety of existing technologies one could imagine using to solve the weak one-
body authentication problem. For example, one could employ a wireless localization technique
to ensure the sensors nodes are within some bodily distance. The body, however, might block
all or some of the wireless signal thereby limiting localization, nor is it clear how these kinds
of techniques would provide confidence to a physician that the data is coming from one body.
Similarly, one can trivially use a form of body-coupled communication [18], but the security
properties these type of communication mediums provide are not well understood. If two users
were to hold hands, for example, would they be considered one body?

When two people are walking together, it is a common natural phenomenon for two walkers
to synchronize their walking patterns. It is unclear whether our method will be fooled by such
a situation, mis-classifying Alice’s and Fred’s sensor devices as being on the wrong body. The
first dataset we captured to test this method actually employed one user trying to mimic the gait
of another user, and our first results showed our algorithm not being fooled by this. This case,
however, requires exploration in a larger dataset.

Our method relies on the assumption that a user is capable of walking, which may not be
true for some users. It remains as future work to determine whether we can extend the method
for a person who is confined to a wheelchair, for example. Even for a user who is able to walk,
there may be an extended period of time after binding a sensor node and before the user walks.
It may be necessary for the mobile node to alert the user that they should walk around so that
authentication can be performed. As future work, we may explore other acceleration events; for
example, to ask the user for clap their hands, or perform some unique movement.

Ideally the algorithm should be tuned to produce more false negatives (i.e., the algorithm
determined the sensor nodes to be on different bodies when they really were on the same body)
than false positives (i.e., the algorithm determined the sensor nodes to be on the same body when
they were actually not) because the consequences of a false positive (recording the wrong per-
son’s data in someone’s health record) are more severe than the consequences of a false negative
(losing data). It may be possible to ‘bias’ the classifier toward false negatives.

Although we do not discuss encryption mechanisms, ensuring data confidentiality is paramount
in any health-related scenario. If one were to optimize the authentication phase by simultane-
ously authenticating all bound sensor nodes, it might be necessary to encrypt the acceleration data
to avoid replay attacks (in which the adversary replays one node’s acceleration data in hopes that
its rogue sensor node will be authenticated as being on the same body as the victim). Even if
such an attack is discounted, the accelerometer data itself might be privacy sensitive because ac-
celerometer data may be used to recognize a victim’s activity. Some activities are clearly privacy
sensitive, and some of those sensitive activities might be detected from accelerometer data alone.

In a practical system, one must consider energy and computational costs. In our model, the
sensor node sends raw acceleration data to the mobile node. If this proves to be too expensive,
then the sensor node could compute features from a window of acceleration and communicate
those features instead. We leave exploring this delicate balance between extendability (allowing
use of other features in the future), computability (due to limited computational capabilities on
a sensor node), and energy requirements (with trade-offs specific to the technology in a sensor
node) as future work. In terms of the mobile node, we assume the cellphone will be more than
capable of computing correlations, but the energy cost of these functions is unknown and requires
more careful analysis. Should the computation prove to be too expensive or time consuming, then
one may need to explore optimizations or approximations, or the assistance of a back-end server,
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with due consideration to the trade-off of computational overhead, accuracy, and privacy.
In addition, a practical system must be cognizant of the locations a sensor might be used. Al-

though we only explore the wrist and ankles for our experiments, we expect our method to work
for other locations since these are the extremes of the body. However, this remains unverified and
left for future work. Adding more locations would increase the time is takes to train the SVM,
however this can be accomplished offline. We would also expect manufacturers would know the
general location where the sensor would be placed on the body and thus could train an SVM for
that particular sensor.

Finally, to truly achieve our vision of making life easier for people like Alice and Fred really
requires solving two core problems. The first problem, recognizing whether sensors are on the
same body, we have addressed in this paper. The second problem, which we haven’t addressed,
is securing communications between the phone and sensor devices by agreeing on a shared en-
cryption key while requiring no user interaction (e.g., the input of pin codes or passwords). There
are existing solutions that address the second challenge, but it is unclear if those solutions can be
applied for accelerometers that are not intentionally shaken together [14]. As such, we leave this
second challenge to future work.

9. Conclusion

Mobile health will play a major role in the future of healthcare. Wearable health sensors
will enable physicians to monitor their patients remotely, and allow patients better access to
information about their health. The method presented in this paper provides the foundation for
any mobile-health system because, in order for the data to be useful, physicians need confidence
that the data supposedly collected about a patient actually came from that patient. We provide the
first step in that verification process: generically authenticating that all the sensor nodes bound
to a mobile node are the same body. We show that our method can achieve an accuracy of 85%
when 40 seconds of accelerometer data from different locations on the body, and our method can
be generically applied regardless of the sensor type and without user-specific training data. In
summary, we make the following contributions:

• We describe a novel problem in the mobile healthcare domain and provide a solution to
the weak version of the one-body authentication problem.

• We extend Lester et al. [7] to sensors carried at different locations on the body – wrist,
ankle, and waist – by extracting features used for activity recognition.

• We provide empirical results to our solution using a dataset of seven users walking for 22
minutes to show that it is feasible.

• We show that our authentication scheme is feasible by analyzing walking intervals of seven
users over the course of several days.
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