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Abstract

We describe AnonySense, a privacy-aware system for realizing pervasive applica-
tions based on collaborative, opportunistic sensing by personal mobile devices.
AnonySense allows applications to submit sensing tasks to be distributed across
participating mobile devices, later receiving verified, yet anonymized, sensor data
reports back from the field, thus providing the first secure implementation of this
participatory sensing model. We describe our security goals, threat model, and the
architecture and protocols of AnonySense. We also describe how AnonySense can
support extended security features that can be useful for different applications. We
evaluate the security and feasibility of AnonySense through security analysis and
prototype implementation. We show the feasibility of our approach through two
plausible applications: a Wi-Fi rogue access point detector and a lost-object finder.

Keywords: opportunistic sensing, urban sensor networks, privacy, anonymity

1 Introduction

Opportunistic sensing has been gaining popularity, with several systems and
applications being proposed to leverage users’ mobile devices to collectively
measure social or environmental data, sometimes used as context in pervasive-
computing applications. In these systems, applications can task mobile nodes
(such as a user’s sensor-equipped mobile phone or vehicle) in a target region to
report context information from their vicinity. In this model, the system op-
portunistically hands the task to mobile nodes that choose to participate, and
the nodes report sensor data through opportunistic network connections (such
as third-party access points they encounter). Examples of such systems include
CarTel [1], Mobiscopes [2], Urbanet [3], Urban Atmospheres [4], Urban Sens-
ing [5], SenseWeb [6], and Metrosense [7] at Dartmouth College. Applications
of opportunistic sensing include collecting traffic reports or pollution readings
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from a particular street or part of a university campus [1,7], finding parking
spots [3], locating lost Bluetooth-enabled objects with the help of other users’
mobile devices [8], and even inferring coffee-shop space availability [9].

In short, opportunistic sensing introduces a new, people-centric, dynamic and
highly mobile communication and computation model. However, it raises three
major challenges.

An opportunistic sensing system depends on a large-scale, heterogeneous and
unpredictable collection of users’ personal devices. Furthermore, the tasking
and reporting mechanism depends on administratively autonomous wireless
networks and the public Internet. Therefore, the first challenge for oppor-
tunistic sensing is to support reliable tasking and reporting mechanisms, and
energy-efficient mobile sensing protocols.

Second, since sensor data is produced by volunteer users, and requested and
collected through third-party access points and the Internet, it is difficult to
guarantee the integrity and quality of reports .

Third and most importantly, user privacy is hard to protect in opportunis-
tic sensing. Since reports usually include the time and location of the user,
location privacy of the user can be compromised by an adversary who can
access the reports. Even if reports are kept confidential, the adversary may
de-anonymize a user by simply observing the user’s various activities; the ad-
versary may analyze what tasks a mobile node downloads, when it submits
reports, or what IP address it is using. Such information may reveal the iden-
tity of the user and other sensitive information. In opportunistic sensing, users
usually offer the resource of their devices without direct benefit; they, there-
fore, will be reluctant to participate if their privacy is at risk, or if it consumes
too many resources on their mobile device.

In this paper, we address these challenges and describe how our system,
AnonySense, incorporates new privacy-aware techniques for secure tasking and
reporting, and demonstrate that our solution consumes few device resources.
Other major systems note these challenges but offer no solutions [1–3,5–7].

Toward that goal, we first propose a basic framework for large-scale oppor-
tunistic sensing and set forth our security goals and threat model in Sec-
tion 2. We also propose a new tasking language that can express a rich set of
context queries. Based on this framework, Section 3 presents our design for
AnonySense, a privacy-preserving sensing infrastructure with reliable sensor
data. We use a stringent threat model that adopts minimal trust assumptions:
people who volunteer their mobile devices do not completely trust the system
or the application users for respecting their privacy.

We evaluate the security of AnonySense by analyzing the defense mechanisms
of AnonySense against possible attack scenarios in Section 4.
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To demonstrate our tasking and reporting architecture, we developed
AnonySense and built two applications of interest to the mobile-computing
community. RogueFinder is our application to task users’ mobile devices
to report Wi-Fi access points to detect those that are unauthorized, and
ObjectFinder leverages Bluetooth “sensors” on mobile devices to locate
Bluetooth-enabled objects. We use these applications to measure the perfor-
mance overhead of our security protocols, and to demonstrate the feasibility
of privacy-aware opportunistic sensing in Section 5. We discuss various design
and implementation issues in Section 6 and conclude in Section 7.

We summarize our contribution as follows:

• We present AnonySense, a general-purpose framework for anonymous oppor-
tunistic tasking and reporting. At the same time, AnonySense respects the
privacy of users and protects the integrity of reports, and optionally allows
for user or application authentication, confidential reports, and incentive-
based reporting.
• We implemented AnonySense. Our experiments show that our privacy-aware

tasking and reporting approach can be realized efficiently, that is, consuming
little CPU time, network bandwidth, and battery energy.
• We demonstrate the flexibility and feasibility of AnonySense in supporting

collaborative-sensing applications by presenting two such prototype appli-
cations: RogueFinder and ObjectFinder.

2 AnonySense Design and Security Goals

In this section, we present a high-level design for people-centric sensing that
can distribute a variety of tasks to a large number of heterogeneous mobile
nodes. When we design this base architecture, we focus on the functionality of
the system, leaving security challenges unsolved. Given the base architecture,
we formalize our security goals and perform a threat analysis, based on which
we design our security solution in Section 3.

2.1 Base architecture

Our base architecture consists of Mobile Nodes (MN), Applications (App), the
Registration Authority (RA), the Task service (TS), and the Report Service
(RS). We also introduce a tasking language AnonyTL [10] to support various
types of sensing tasks. Figure 1 illustrates the base architecture.

The mobile nodes (MNs) are devices with sensing, computation, memory, and
wireless communication capabilities in various platforms such as smartphones,
PDAs, or laptops. Each MN is carried by a person called carrier, and can ac-
cess personal sensors either on board (e.g., an accelerometer in the iPhone)
or attached to the carrier. We assume the MN has wireless access to the In-
ternet, at least intermittently, through some open-access Wi-Fi infrastructure
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Fig. 1. Base architecture for large-scale people-centric sensing

operated by any number of individuals and organizations [1]. 1

When a carrier wants to participate in AnonySense, she has to register her
mobile device with the registration authority (RA). During registration, the
AnonySense software is installed in the MN along with the IP addresses and
certificates of the task service (TS) and the report service (RS).

When an application (App) wants to collect sensor data from MNs, it creates
a new task, written in AnonyTL, and submits the task to the RA (message À

in Figure 1). After validity checks, the RA forwards the task to the TS (mes-
sage Á). The MN contacts the TS to download the available tasks (message Â).
The MN chooses tasks to run based on the acceptance condition of the task
and the MN’s own policy. The acceptance condition limits which MNs may
execute the task (see Section 2.2 for more detail), and the MN’s policy deter-
mines whether to contribute its resources for the task. If the MN accepts a
task, it collects sensor data according to the task description and later submits
reports to the RS (message Ã). Later the App retrieves the reports from the
RS (message Ä).

In the proposed architecture, tasks are pulled by an MN from the TS rather
than pushed to the MN. We chose a pull-based protocol for scalability and
for carrier privacy, as the connection can be anonymous. Likewise, reports are
pulled by the App from the RS for scalability.

2.2 AnonyTL: a general-purpose task language

We defined a simple and expressive language called AnonyTL for applications
to specify their tasks. Instead of using an existing language such as SQL or

1 Although we assume direct communication between MNs and access points, multi-
hop connections can be leveraged if necessary. Since MNs do not trust access points,
the use of multi-hop connections does not impact the security of AnonySense.
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XQuery, we designed AnonyTL with Lisp-like syntax to allow concise task
descriptions, a small interpreter, easy portability to embedded platforms, and
a clean fit with the sensing/reporting semantics. For the formal definition of
AnonyTL, please refer to the AnonyTL specification [10].

AnonyTL defines a task by providing acceptance conditions (who can accept
this task), report format (what to report), reporting frequency (how often
to report), reporting condition (when to report), and termination conditions
(when to stop reporting). The following example defines a RogueFinder
task in AnonyTL:

( Expires 1196728453)
( Accept (= @WiFi ‘ a/b/g ’ ) )
( Report (LOCATION APLIST)

( Every 60 seconds )
( In ( (1 1) (2 2) (3 0 ) ) ) )

The first line defines when to stop the task: “stop reporting after given Unix
time.” The second line describes an acceptance condition that “only MNs in
which the Wi-Fi interface supports 802.11 a, b, and g will accept this task.”
The third line defines what to report: location of the MN (using a location
sensor) and a list of access points observed by the MN (using an APLIST
“sensor,” based on the Wi-Fi interface). This report format also implicitly
defines another acceptance condition: “only MNs with a location sensor and a
Wi-Fi interface will accept this task.” The fourth and fifth lines respectively
describe how often and under what condition the MN will generate a report:
“report every 60 seconds whenever the MN is located within the polygon
defined by coordinates (1,1), (2,2), and (3,0).” AnonyTL supports a broad
range of conditional expressions and an extensible set of sensor types whose
description we omit due to space limitations.

2.3 Security Goals

The base-architecture presented obviously does not provide any privacy or
integrity guarantees: reports may reveal sensitive information about the carrier
and the reports may be manipulated by an adversary. We therefore design
AnonySense to meet the following security goals.

(SG1: Carrier Privacy) AnonySense aims to prevent identity disclosure of
carriers: an adversary cannot link an AnonySense activity to the identity of a
carrier. AnonySense activities include any action of the MN (e.g, tasking and
reporting) and any result of those actions (e.g., reports). Identity disclosure is
undesirable because it can lead to the disclosure of sensitive information about
the carrier: location and time (e.g., where was John last night?), or sensitive
sensor data (e.g., what was John doing this morning?).

(SG2: Report Integrity) AnonySense aims to protect report integrity : the
integrity of a report is protected if the report has been generated by a legiti-
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mate MN, according to the task definition, and the report was not modified
in transit.

2.4 Threat model

We design AnonySense to protect carrier privacy and report integrity under
the following threat model.

We consider a powerful adversary who has the ability to compromise some
system components, or public infrastructure such as access points (AP). An
adversary can also become an App by creating its own task, or become a
legitimate carrier by registering its own mobile device to the RA. We also
consider a local adversary, near an MN, who may already know the carrier’s
identity, but is curious about the carrier’s private information. We assume the
adversary can do all these things, at the same time.

However, we assume that the adversary cannot compromise certain trusted
components or the software platform of an MN (such attacks trivially violate
the privacy of the user, with or without AnonySense). In Section 3 we discuss
which components are assumed to be trusted.

Such an adversary may attempt the following attacks against carrier privacy
and report integrity.

Threats to Carrier Privacy

Narrow tasking. A malicious application may attempt to learn about a vic-
tim carrier by submitting a task with such restrictive acceptance conditions
that the victim and only a few other carriers will accept the task. For exam-
ple, the adversary may submit a task only for the mobile user who carries a
heart-rate sensor paired with an iPhone; then, the reports may contain John’s
locations with high probability.

Tasking de-anonymization. An adversary may attempt to de-anonymize
an MN during a tasking action, that is, when the MN connects to the TS and
downloads some tasks. Through tasking actions, the MN may reveal to the
TS where and when it connects and what kind of tasks it wants to download.
The carrier’s preference for tasks can reveal attributes of the MN and types
of carried sensors. Linking multiple tasking actions allows the adversary to
trace a carrier. By combining a trace with known facts about the victims, the
adversary may be able to identify the carrier.

Reporting de-anonymization. An adversary may attempt to de-anonymize
an MN during reporting actions, that is, when the MN connects to the RS and
submits reports. In this attack, the adversary focuses on reporting actions (the
next threat considers report content). Through reporting actions, the MN may
reveal to the RS where and when they are reporting and what kind of tasks
they performed. Linking multiple reports may allow the adversary to identify
the carrier more easily, for example, by analyzing patterns of where and when
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the reports are submitted.

Selective tasking. To link between multiple reports, the adversary, control-
ling the TS, may attempt to distribute a task only to one or a few MNs so
that reports for the task are easily linked with each other. For example, if
only one MN is known to have downloaded a task, all reports for the task are
easily linked to the same MN. Note that selective tasking attack restricts the
tasked MN-set for report linkability by controlling task distribution, while nar-
row tasking attack does so for identity disclosure through narrow acceptance
conditions.

Report analysis. An adversary may attempt to de-anonymize an MN by
analyzing information contained in one or more reports. For example, the
adversary tries to recognize multiple reports as originating from the same MN
by analyzing the content of reports. Once linked, the series of reports may
reveal a location trace of the carrier, which may be combined with known
information to identify the carrier. If lucky, the adversary might be able to
de-anonymize an MN from only one report, if, for example, a report arrives
from an IP address known to be in John’s house.

Local eavesdropping. A local adversary may attempt to overhear a nearby
MN’s wireless communication to learn what tasks the carrier is performing or
what sensor values the carrier is reporting.

Eavesdropping by collusion. In this attack, a local adversary may attempt
to learn the MN’s communication by colluding with the TS or the RS. The
TS or RS may be able to provide a local adversary with the contents of the
victim MN’s communications, while the local adversary can provide time and
location information. To succeed in this attack, the adversary and its colluding
parties should be able to recognize the victim’s communication among the
many communication sessions of the colluding TS or RS.

Threats to Report Integrity

Report tampering. An adversary may attempt to degrade the quality of the
reported sensor data by manipulating reports submitted by a legitimate MN.

Report replay. An adversary may attempt to degrade the quality of the
reported sensor data by duplicating an existing report submitted by a legiti-
mate MN.

Report forgery. An adversary may attempt to degrade the quality of the
reported sensor data by injecting bogus reports.

Threats outside the scope

We do not focus on denial of service (DoS) attacks. For example, we do not
consider DoS attacks against system components or MNs. We also assume that
the adversary (or even the malicious carrier) cannot compromise legitimate
MNs to launch report tampering or report forgery attacks.
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Fig. 2. AnonySense: secure architecture for large-scale people-centric sensing. Double
arrows indicate AnonySense protocols for carrier privacy and report integrity.

3 AnonySense: Architecture and Protocol

In this section, we extend the design proposed in Section 2.1 by adding new
security features and introducing new security components, aiming to achieve
our security goals (Section 2.3) under the above threat model (Section 2.4).

3.1 Architecture

AnonySense adds three components to the base architecture — an anonymiza-
tion service (AS), a synchronous anonymizing network (such as Tor [11]), and a
(asynchronous) MIX network — as well as custom security protocols. Figure 2
illustrates the new secure architecture of AnonySense.

AnonySense works as follows. To bootstrap, the RA certifies system compo-
nents such as TS, RS, AS, and MNs in terms of correct software installations
and security features if necessary. See below for detailed requirements for each
component. When an App submits a task, the RA verifies whether the task
respects carrier privacy (see Section 3.3.1) before releasing tasks to the TS. At
random intervals, the MN connects to the TS (through an anonymizing net-
work), to download new tasks. 2 The MN chooses which tasks to accept. When
reports are ready, the MN sends the reports either to RS or to AS depending
on the sensitivity of the reports. If the report contains sensitive information,
the reports are sent to AS, which anonymizes the reports before forwarding
to the RS. If not, reports are sent directly to the RS via a MIX network.
An App can retrieve reports from the RS, and can verify the integrity of the
reports. Overall, AnonySense provides secure protocols for task submission,
task distribution, report submission, and report retrieval (see Section 3.3).

2 Any unpredictable pattern of connections will suffice; the purpose is to make it
difficult for the TS to link together a sequence of connections to a given MN.
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AnonySense Components

At the center of AnonySense security architecture is the registration authority
(RA). The RA is the root of trust in the sense that every component trusts
the certificates issued by the RA, the RA always behaves correctly, and the
RA never becomes malicious. The RA is responsible for (i) certifying system
components and MNs, (ii) certifying privacy-safe tasks, and (iii) releasing
tasks securely (see Section 3.3.2 for more detail). To register an MN, the
RA ensures that (i) the AnonySense software is installed in the MN, (ii) the
public keys of the TS, RS, and the AS are installed, (iii) the sensors are
properly calibrated, (iv) the attributes of the MN are recorded in the MN
database, and (v) a digital-signature key and a group-signature key are stored
securely (see Section 3.3.3 for their use).

The Anonymizing network (Tor) serves to protect the network identity and
location of the MN when it connects to the TS to download new tasks. Tor [11]
allows clients to anonymously connect to servers through multiple Tor relays
using onion encryption. Traffic is delivered as quickly as possible and the
location (IP address) of the client is hidden from the server. Each MN connects
to the TS with a randomized interval, making it harder for the adversary to
link between tasking connections.

The Mix Network (MIX) serves as an anonymizing channel between MNs
and the RS, routing reports through multiple servers, inserting delays and
mixing reports with messages from other sources and to other destinations. No
adversary (the RS, a MIX node, or an eavesdropper) can link an MN’s reports
together, identify which MN sent the report, or learn the time and location of
the reporting action. Our AnonySense implementation uses Mixmaster [12],
the most popular MIX in use today, although any remailer-type MIX network
supporting SMTP email protocols would suffice.

Normally MNs send reports to the RS via the MIX network. MNs can op-
tionally first send their reports to a trusted Anonymization Service (AS) if
the MN desires additional privacy measures. The AS will apply anonymiza-
tion techniques to ensure that each report is mixed with reports generated by
other carriers with similar information that may serve as “quasi identifiers.”
The AS could also apply blurring techniques [13,14] by adding uncertainty to
the location within reports (or even a series of reports) to ensure that the MN
cannot be uniquely identified. The AS can also blur reporting times by acting
as a MIX node [14]. (Although we show how AnonySense MNs can locally blur
location and time [15], a trusted AS can be more effective by mixing reports
from other MNs.) These techniques are out of the scope of this paper, but we
provide support for such systems within our architecture.

AnonySense uses group signatures by Boneh et al. [16] to authenticate an MN
or sign a report without revealing the identity of the signing MN. (Boneh’s
scheme was the only publicly available implementation of group signatures,
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at the time of implementation.) If an AS is used as part of the AnonySense
architecture, we assume that Apps trust the AS to verify the integrity of
reports from the MNs. Reports modified or aggregated by the AS are signed
with the AS’s own key. The App need only verify that a report is correctly
signed by either the AS or with the MNs’ group signature.

3.2 Trust model

AnonySense assumes minimal trust assumptions on its components.

The carrier of a mobile node trusts the RA to correctly perform its certifica-
tion process and trusts the AS to perform its role of protecting the reports
from de-anonymization as described in Section 3.1. The carrier also trusts the
MIX network and the anonymizing network to perform their roles, protecting
communication privacy.

The application trusts the RA to certify MNs as described in Section 3.1, trusts
the AS to verify the integrity of reports it processes, and trusts certified MNs
to produce only valid reports (consistent with our threat model in Section 2.4,
which assumes the adversary does not compromise MNs).

Note that no components trust the TS, RS, App, and other peripheral com-
ponents (such as APs), to protect privacy or anonymity; any or all of these
components may be malicious at any time.

3.3 Protocol details

We now present a detailed description of the AnonySense protocols. In what
follows, we denote by X ⇒ Y that X sends a message to Y over a secure
channel (i.e., a channel that guarantees the integrity and confidentiality of
exchanged messages). When an endpoint is underlined, we further mean that
the opposite endpoint has authenticated that endpoint; that is, X ⇒ Y means
that X has authenticated Y , X ⇒ Y means that Y has authenticated X, and
X ⇒ Y means that X and Y are mutually authenticated. Additionally,

Tor⇒
denotes that the communication is performed over Tor.

3.3.1 Task registration

In Algorithm 1, an App submits a task t to the RA (line 1) through an RA-
authenticated encrypted channel. Upon receiving the task, the RA determines
whether the task can be accepted by at least ka MNs in the MN-setM, where
ka is a system parameter that defines the minimum anonymity-set size for
tasking (line 2). If the test succeeds, the RA generates a unique task-id for the
task (line 3), stores the task and the task-id in the task repository T (line 4),
and notifies the App of the task-id so that the App later can claim reports
(line 5). If the task acceptance condition is too restrictive, the RA rejects the
task (line 7).
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Algorithm 1 Task registration
Notation:

ka : threshold for narrow tasking
1: App ⇒ RA : 〈t〉 . App submits a new task t

{RA runs the following}
2: if |{MN ∈M | AcceptTaskMN(t) = true}| ≥ ka then . Wide tasking
3: tid := GenerateNonce(t) . Generate task-id
4: T := T ∪ {〈tid, t〉} . Store in task repository
5: RA ⇒ App : 〈“accept”, tid, t〉
6: else . Narrow tasking
7: RA ⇒ App: 〈“reject”, t〉
8: end if

3.3.2 Task distribution

The goal of task distribution is to ensure that MNs are confident that the
tasks they receive are (a) ka-anonymous, (b) untampered copies of the task
submitted by the App, and (c) not a subset produced by the TS in a “selective
tasking” attack. We design the protocol so that any deviation of the TS from
the protocol is detected by MNs. The RA’s signature guarantees (a) and (b);
(c) is the core challenge we address here.

Our task-distribution algorithm comes in two parts: task-release (Algorithm 2,
in which the RA releases tasks to the TS) and task-download (Algorithm 3,
in which the MN downloads tasks from the TS). The prerequisites of this
approach are (i) the clocks of MNs are reasonably synchronized with the RA
(e.g., within one minute) and (ii) the MN knows when the RA releases tasks
to the TS, called release-times. The first prerequisite is easily achieved; for
example, most mobile phones maintain fairly accurate clocks through network
providers. For the second prerequisite, the MN obtains from the RA (during
registration) details of its release schedule (e.g., an initial time and an interval).
(Other, more sophisticated release schedules are possible, but outside the scope
of this paper.)

Let r1, r2, . . . be a sequence of release times announced by the RA. At each
release time r = ri for some i > 0, let Tr be all the unexpired tasks (Algo-
rithm 2 line 1). The RA creates a release message mr that defines its release
time (line 2) followed by the list of task-id and task-hash pairs of each task in
Tr (lines 3–5). The release message is signed (line 6) and sent to the TS along
with the signature and the set Tr. The TS needs only remember the latest
release (line 8). (Although line 7 implies that the RA transmits all tasks in Tr

on every release, this step can of course be optimized if RA–TS bandwidth is
a concern. The RA would transmit only 〈mr, σr〉, then the TS requests only
those tasks needed to update its local task cache to Tr.)
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Algorithm 2 Task release
Notation:
r1, r2, r3, . . .: release times announced by the RA

{RA runs the following at time r ∈ {r1, r2, . . .}}
1: Tr := {〈tid, t〉 ∈ T | t is unexpired} . unexpired tasks in T
2: mr := r
3: for each 〈tid, t〉 ∈ Tr do
4: mr := mr || tid || Hash(tid||t)
5: end for
6: σr := SignRA(mr) . RA signs rth release message mr

7: RA ⇒ TS : 〈mr, σr, Tr〉
{TS runs the following}

8: L := 〈mr, σr, Tr〉 . TS remembers only the latest release

Algorithm 3 shows how the MNs download tasks from the TS, assumed to
run at some random time t = now. To pick a random time, the MN can
wait for a while uniformly at random before next download, or alternatively
the MN can choose a moment uniformly at random within each predefined
period (e.g., a day) for download. This is to prevent the TS from linking
two different downloads. 3 We wish to avoid the cost of downloading all the
tasks, every time, over the MN’s wireless network link. Thus, the MN sends
the TS a random subset-index j ∈ 0, . . . , p− 1 (lines 1–2) where p is a system
parameter. Given this subset-index, the TS extracts a task-subset as indicated
by the index (lines 3–4). The TS finally forwards this set of filtered tasks, the
release message and its signature to the MN (line 5). Note that one can define
task-subset differently, and our algorithm only shows one example of such
methods (i.e., modulus p).

Given downloaded tasks and the release message, the MN checks to be sure
the release time is the latest (line 6), the signature is valid (line 7), the set
of downloaded tasks equals the jth subset of released tasks (line 8), and the
hash values of downloaded tasks match the release message (line 9). If any of
these checks fail, the MN reports the TS as fraudulent to the RA (line 11).
If all succeed, then the MN executes the acceptable and unseen tasks (lines
16–18). Note that function StartTaskMN runs the task in the background so
that the MN can perform multiple tasks simultaneously.

3.3.3 Report submission

Suppose the MN decides to submit report d for the task t with task-id tid .
When d does not contain any sensitive data, the MN sends a report message
to the RS via a MIX network; the message contains the task-id and the report,

3 To choose the best min-max waiting time (or predefined period) that maximizes
privacy, one can follow the approach proposed in [17].
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Algorithm 3 Task download
Notation:
p: the number of task-subsets

{MN does the following at random intervals}
1: pick a random j ∈ {0, . . . , p− 1} . random subset index
2: MN

Tor⇒ TS: 〈j〉
{TS does the following}

3: 〈mr, σr, Tr〉 := L . The latest release L
4: T (j)

r := {〈tid, t〉 ∈ Tr | tid ≡ j (mod p)} . Compute jth subset of Tr

5: TS
Tor⇒ MN: 〈mr, σr, T

(j)
r 〉

{MN does the following}
6: if r 6= max{ri ∈ {r1, r2, . . .}|ri ≤ now} . Check freshness of release
7: or VerifyRA(mr, σr) = false . Verify RA’s signature
8: or {tid|〈tid, t〉 ∈ T (j)

r } 6= {tid ∈ mr|tid ≡ j(mod p)}
. Mismatch T (j)

r and mr

9: or ∃〈tid, t〉 ∈ T (j)
r s.t. tid||Hash(tid||t) 6∈ mr . Wrong hash in mr

10: then
11: σfraud := GSigMN (“tasking fraud” || TS)
12: MN⇒RA: 〈“tasking fraud”, TS, σfraud〉 . Report fraud
13: exit
14: end if
15: for all 〈tid, t〉 ∈ T (j)

r do
16: if tid was not seen before . Check task duplication
17: and AcceptTaskMN(t) = true . Check acceptance condition
18: StartTaskMN(tid, t) . Execute the task in the background
19: end if
20: end for

signed by the MN’s group-signing key (Algorithm 4 line 2–3). The symbol ⊥
indicates that there is no explicit nonce value; with Boneh’s group-signature
method [16], the group signature serves the purpose of a nonce (preventing
replay attacks), because the group signature is different every time the message
is signed. This value also indicates that the report was not anonymized by the
AS.

When d contains sensitive information, 4 the MN sends to AS its identity,
the task-id, the report, a nonce, and a digital signature and, optionally, the
corresponding certificate. The MN sends its identity because the AS needs
that information for enforcing k-anonymity and for path confusion. Unlike

4 A report contains sensitive information if part of the report is sensitive (e.g.,
location information) or it includes static attributes that may collectively identify
the user if external information is given (called quasi-identifiers [18]). The decision
algorithm depends on the exact anonymization techniques available in the AS.
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Algorithm 4 Report submission

{MN does the following to report d for task 〈tid, t〉}
1: if d has no sensitive information then
2: σd := GSignMN(tid || d) . Compute a group signature
3: MN

MIX→ RS : 〈tid, d,⊥, σd〉
4: else
5: Nd := Nonce() . Generate a nonce
6: σd := SignMN(MN || tid || d ||Nd) . Compute a digital signature
7: MN ⇒ AS : 〈MN, tid, d,Nd, σd,CertMN〉 . Encrypted for AS
8: end if

{AS does the following after line 7}
9: if Verify(MN||tid||d||Nd, σd) = true then . Verify the signature

10: d∗ := Anonymize(MN, tid, d) . Anonymize the data
11: σd∗ := SignAS(tid || d∗ || Nd) . Digital signature of AS

12: AS ⇒ RS : 〈tid, d∗, Nd, σd∗〉
13: else
14: Discard(MN, tid, d,Nd, σd) . Reject the report
15: end if

{Upon receiving a tuple x in line 7 and 12, RS does}
16: R := R ∪ {x} . RA stores the reports

the previous case, a digital signature is used because the MN trusts the AS
not to compromise its privacy.

When an AS receives a report, it first verifies the signature to make sure
it came from a valid MN. We skip details on the one-time verification of the
RA’s signature from the MN’s certificate. Then, the AS anonymizes the report
(line 10) and signs a new message (line 11) before sending it to the RS (line 12).
The anonymization technique is out of the scope of this paper and thus left
as general as possible to support a variety of different anonymizing schemes.

When the RS receives a report, it simply stores the report in its database.

3.3.4 Report retrieval

When the App wants to receive reports, it sends the task-id of interest to the
RS (Algorithm 5 line 1). Upon receiving tid, the RS responds with tuples of
the task-id, report, nonce, and signature for the requested task-id.

If Nd is ⊥ (line 3), the App verifies the group signature (line 4) and checks
for duplicates (caused either by a replay attack or simply by repeated queries
to the RS). When all is well, the App stores the report along with the task-id
and the signature (as a nonce).

If Nd is not ⊥, the App verifies the AS’s signature (line 11) and checks for
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Algorithm 5 Report Retrieval and Verification

1: App ⇒ RS : 〈tid〉 . request reports for a task
2: RS ⇒ App : {(tid, d,Nd, σd) ∈ R | tid = tid}
{App does the following for each received report 〈tid, d,Nd, σd〉}

3: if Nd =⊥ then . No AS involved
4: if GVerify(tid||d, σd) = true . Verify MN’s group sig.
5: and 〈tid, d, σd〉 6∈ D then . Check replay attack
6: D = D ∪ {〈tid, d, σd〉} . Accept d as a valid report
7: else
8: Discard(tid, d,Nd, σd)
9: end if

10: else . AS involved
11: if VerifyAS(tid||d||Nd, σd) = true . Verify AS’s signature
12: and 〈tid, d,Nd〉 6∈ D then . Check replay attack
13: D = D ∪ {〈tid, d,Nd〉} . Accept d as a valid report
14: else
15: Discard(tid, d,Nd, σd)
16: end if
17: end if

duplicates (line 12). If success, it stores the tuple; otherwise, it discards.

3.4 Extended Features

AnonySense can be easily extended to support any combination of the follow-
ing extensions.

Replicated TS or RS. Although the architecture and protocols described above
assume there is only one TS server and one RS server, it is possible to improve
scalability and availability by replicating the TS or RS services on multiple
servers. Given multiple TS replicas, the RA releases the same set of tasks
to each TS (Algorithm 3); each MN can download tasks from any TS. In-
deed, by contacting a different TS for each download, an MN may increase
its anonymity by making it more difficult for an adversary to link its down-
load activity. Given a system with multiple RS replicas, the RA selects an RS
at random when it processes the task. The RA encodes that RS address, in
its response to the App (Algorithm 1) and in the task delivered to the TS
(Algorithm 2), enabling the MN to submit reports to that RS (Algorithm 4).

Closed Tasking and Reporting. To limit task submissions to some set of “autho-
rized” applications, we extend Algorithm 1 so that the RA first authenticates
the App and confirms its credentials for each submitted task. Symmetrically,
to ensure that only the submitting App is allowed to retrieve its task’s reports,
we extend Algorithms 4 and 5 so that an MN encrypts reports under the pub-
lic key of the App, which is included in the task. Moreover, to allow tasking
specific MNs without exposing the task details or destination to other parties,
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we extend our protocol so that the App adds a label identifying the target MN,
and encrypts the task using the RA’s public key. The RA decrypts the task
and then encrypts it using a secret key k it shares with that carrier’s MN at the
time of certification; it prepends a nonce n, and a one-way keyed hash of the
target MN’s identity along with the nonce, i.e., H(MN, n, k). This approach
provides efficiency and privacy: the target MN can quickly check whether the
task is for itself; other MNs do not learn the identity of the target, and waste
no time in decrypting the task. The nonce ensures that multiple tasks targeted
at the same user appear no different from tasks targeted at different users, and
the key prevents dictionary attacks.

Identifiable Tasking and Reporting. Anonymity is not always desired; one
might wish to identify the tasking App or the reporting MN. AnonySense
can support either or both. To allow a carrier to identify the tasking App
or user, we extend our protocols as follows. The App signs the task with an
application-specific or user-specific private key. The RA can verify the signa-
ture, and state (in its own signature about the task) the identity and the fact
that the signature was verified. Any MN may now use this identity, e.g., in
deciding whether to accept the task or submit identifiable reports. To allow
identifiable reports, the application simply includes “identity” as one of the
“sensor values” to be returned by a task, as part of a report statement. If the
MN chooses to accept such tasks, it includes the carrier’s identity, signs the
reports with the carrier’s private key, and attaches the certificate for that key.
The App can verify the signature and thus learn and validate the origin of
the report. As an optimization, the MN can include the certificate in only the
first report, expecting the App to cache the certificates for validating future
reports. As a generalization, the App may request “sensors” such as “age” or
“gender”; the MN attaches the relevant attribute certificates to the report.

Incentive-based reporting. To provide incentives for participation in oppor-
tunistic sensing, we extend our protocols to support a direct reward mecha-
nism. 5 We assume that only the application can compute appropriate rewards
and pay the carriers for their contributions. On behalf of applications, a sys-
tem component called the payment service (PS) can distribute to carriers the
payments related to them. In such a scheme, the adversary should not be able
to link a reward to a carrier or to another reward (as being claimed by the same
carrier). Consistent with our trust assumptions above, the adversary may col-
lude with the PS and applications. We propose the following delayed reward
mechanism. The carrier occasionally contacts the PS to claim rewards for his
or her contributions made in the past. Although any cryptographic trapdoor
function will do, our scheme uses a one-way function (e.g., SHA2) for perfor-
mance reasons. Let F (·) be the one-way function and h(·) be a hash function.

5 Although the literature abounds with incentive-based systems [19–22], only a
few support privacy [23,24], and none of them supports the rewarding model of
AnonySense.
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Given a report d, the MN picks a nonce nd and computes λd = F (h(d)||nd)
when reporting to the RS, or λd = F (h(Nd)||nd) when reporting to the AS
where Nd is the nonce in Algorithm 4 line 5. The MN appends λd to the
report message and signs it along with the rest of the message (in the lines
2, 3, 6, and 7 in Algorithm 4). After verifying the signature and evaluating
the value of the report, the application sends the PS a self-signed payment
(h(d), λd, pd) or (h(Nd), λd, pd) where pd is an e-cash payment appropriate for
report d. To redeem its contribution, the carrier anonymously sends the PS a
claim message (h(d), λd, nd) or (h(Nd), λd, nd). If the PS can verify λd using
function F (·), it forwards the payment to the carrier. The carrier can verify
the payment using the application’s public key. The above scheme protects
carrier privacy as long as λd is fresh for each report and the one-way function
is secure.

4 Security Evaluation

In this section, we examine how AnonySense (Section 3) indeed achieves our
security goals (Section 2.3). We do so by showing how adversaries will fail
in their attacks discussed in Section 2.4. As is standard in such analysis, we
assume the underlying security components and tools are secure based on
standard assumptions for those tools (e.g., sufficient key lengths are used for
cryptographic schemes, only a small fraction of Tor nodes are malicious, at
least one MIX node is honest, the RA operator is honest, and so on).

AnonySense prevents the narrow tasking attack (i.e., submit tasks with a nar-
row acceptance condition) because the RA approves only tasks with non-
restrictive acceptance conditions and the MN can verify that a task was ap-
proved by the RA. To decide whether an acceptance condition is narrow, the
RA maintains an attribute database for all MNs and checks whether there
are enough MNs (i.e., at least ka MNs) that meet the acceptance condition
(Algorithm 1). To verify that a downloaded task is approved by the RA, the
MN checks if the release message, accompanying the task, is signed by the
RA (Algorithm 3 line 7) and the hash value of the task matches the one in
the release message (Algorithm 3 line 9). Therefore, the narrow tasking attack
cannot succeed as long as the attribute database remains up-to-date, the RA
private key remains secret, and the RA remains trustworthy.

AnonySense prevents the tasking de-anonymization attack (i.e., identify the
MN when it downloads some tasks from the TS) by making it hard to link
download events with the MN or other download events. Each download event
occurs at a random interval, uses a Tor-anonymized source IP address, asks
for a random subset of tasks, and does not reveal which tasks are accepted by
the MN.

AnonySense prevents the reporting de-anonymization attack (i.e., identify the
MN when it submits reports) using the MIX-network, the AS, and the RA’s
task verification. By observing the task-id, the time of receipt, and the sending
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IP address (Algorithm 4 lines 3 and 12), the adversary tries to link report
actions to an MN, or to other report actions, and then may use external data
to identify the MN. In AnonySense, the IP address and report-receipt time do
not reveal the MN’s identity because reports are sent through a MIX network,
which hides the IP address and adds a random delay (Algorithm 4 lines 3),
or the AS submits the report on behalf of the MN with the same effect as a
MIX network (Algorithm 4 lines 12). The task-id cannot identify the carrier
because there are enough MNs that can accept the task (i.e., narrow tasking
is prohibited).

For the same reasons, the adversary cannot link multiple reporting actions
by only observing reporting actions; IPs are hidden, times are randomized,
and there exist enough other MNs for the same task-id). The attacker may
try colluding with the TS for selective tasking attack, i.e., arranging for the
TS to distribute a specific task only to one MN. Then, any reports for that
task arriving at RS are generated by the same MN. AnonySense prevents this
selective tasking attack because the TS has no control over who gets what tasks
(Algorithm 3 lines 1–5). More precisely, since the MN randomly chooses one
of p subsets of all the available tasks, each task t is downloaded by more than
Nt/p MNs on average, where Nt denotes the number of MNs that connects to
the TS during the lifetime of the task. Depending on the task lifetime and the
task-download frequency of MNs, one can decide on the value of p to control
how many MNs are given each task on average.

AnonySense prevents the report analysis attack (i.e., identify the carrier by
looking at the content of the reports) because of the AS. Many techniques
have been proposed to anonymize reports with sensitive data [13,14,18,25–
27,15,28,29]. The anonymization server (AS) is a trusted component of
AnonySense that is responsible for anonymizing reports with sensitive informa-
tion. The AS could implement any state-of-the-art anonymization algorithm,
and its privacy guarantees vary with the algorithm. For example, the AS can
guarantee k-anonymity for each report, perturb sensitive fields, or induce con-
fusion among mobility paths. For some anonymizations to work well, the AS
needs access to the MN attribute database.

In AnonySense, the MN decides whether anonymization is necessary for its
reports (Algorithm 4 line 1) and, if so, sends the report to the AS (line 7).
A report is assumed to be sensitive if it contains the location of the carrier
or other static attributes (called quasi-identifiers [18]) that may potentially
identify the carrier.

AnonySense prevents the local eavesdropping attack because the communica-
tion with the TS, the RS, and the AS is encrypted due to onion encryption
by Tor/MIX or the secure channel with the AS. Because of the encryption,
the eavesdropper does not know whether the MN is contacting the TS, RS or
any other non-AnonySense destination. A local eavesdropper may recognize
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an MN’s connection to the AS, but (due to encryption) sees none of the report
and (by trust assumption) cannot collude with the AS.

AnonySense prevents the report tampering and the report forgery attack by
the MN’s group signature (Algorithm 4 line 2), the MN’s digital signature
(Algorithm 4 line 6), the AS’s digital signature (Algorithm 4 line 11), and the
App’s trust in the AS. Therefore, the application can detect any unauthorized
changes in reports due to the signatures (Algorithm 5 lines 4 and 11).

AnonySense prevents the report replay attack by the use of nonces: the group
signature σd (used as a nonce as well) in Algorithm 4 line 2 and the nonce
Nd in Algorithm 4 line 5. Note that the group signature can work as a nonce
because the group-signing algorithm produces a different signature for each
signing — even for the same message. The application and AS check nonces
to detect duplicated reports (Algorithm 5 lines 5 and 12). Any attempt to
replace a nonce is detected via mismatching signatures (Algorithm 5 lines 4
and 11).

In the above analysis, we showed that the AnonySense architecture and pro-
tocols can effectively prevent the plausible threats identified in Section 2.4. In
the context of the considered attacks and the adversary’s assumed capabili-
ties, AnonySense achieves our security goals – carrier privacy (SG1) or report
integrity (SG2) – set forth in Section 2.3, fulfilling the privacy and security
requirements of opportunistic people-sensing systems.

5 Performance Evaluation

We implemented the complete AnonySense system, except for the anonymiza-
tion server (AS). The services run on generic Linux computers. The mobile-
node software runs on a Linux PDA (the Nokia N800) and the Apple iPhone,
and can be easily ported to any other Unix-based platform.

In this section we describe our full implementation and evaluation. Our perfor-
mance evaluation focuses on the cost the implementation imposes, particularly
on the mobile nodes’ resources: network bandwidth, CPU time, and battery
life.

5.1 Implementation

Figure 3 illustrates the overall architecture of our prototype implementation.
The AnonySense services (RA, TS, and RS), a single-node MIX, and an appli-
cation component run on a Linux desktop. We use the Tor service provided by
Torproject.org. Although a real AnonySense deployment would require multi-
ple MIX nodes, we needed only one node for the purpose of our measurements.
Realistic MIX latency information is easily obtained from a pinger. 6 The ser-
vices were connected to Dartmouth’s wired network (100 Mbps switched Eth-
ernet), and the MNs were connected to Dartmouth’s Wi-Fi wireless network.

6 http://pinger.mixmin.net/
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Fig. 3. The architecture of our prototype implementation.

We do not implement the AS because anonymization necessarily depends on
the nature of the report data; one could easily deploy existing implemen-
tations of anonymization algorithms in AnonySense. For example, given an
anonymization module, one can add the interface with MNs and the RS as
described in Algorithm 4.

Communications. Our implementation leverages standard protocols that use
open-source libraries, resulting in compact and robust code. The Apps, the
RA, the TS, and the RS communicate with each other over SSL-authenticated
HTTPS channels (double arrows in the pseudo-code). Some connections re-
quire mutual authentication while other connections require one-way authenti-
cation; the authenticated entities are underlined in the protocol descriptions.
The MN communicates with the TS through an SSL channel over the Tor
network while it communicates with the RS through SMTP over the MIX
network.

Servers. The AnonySense services are written in the Ruby programming lan-
guage (v1.8). Both the TS and RA are implemented using Camping [30], a
micro-framework for developing small HTTP servers, with the actual SSL and
HTTP handling done by Mongrel [31]. The RS is a simple Ruby script that
processes emails as forwarded by the postfix email server. The RS verifies and
decrypts emails forwarded to it by the MIX, storing reports for later retrieval
by the App. Each server is backed by a SQLite3 database for persistence.

Mobile node. We use a Nokia N800 (with 330 MHz TI OMAP 2420 processor
and 128 MB DDR RAM) equipped with IEEE 802.11b and Bluetooth 2.0
interfaces. Although this popular device is not a mobile phone, its features
are comparable to many “smart” phones; we chose this device because its OS
(Linux) eases system development. The MN software also compiles and runs
on the iPhone, but due to the current closed nature of the platform APIs,
its sensing capabilities are limited to 802.11-related measurements (including
localization).

The AnonySense MN software is written in C++. It downloads tasks from
the TS using libcurl, and verifies task signatures using the RSA and SHA-1
functions provided by OpenSSL. To parse downloaded tasks, the AnonyTL
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interpreter uses a Bison/Flex-generated parser. Wireless SSID scanning capa-
bilities are provided by the wireless tools (libiw version 28) library, and the
equivalent Bluetooth capabilities are provided by BlueZ’s hcitool utility. Lo-
calization is currently performed by Skyhook’s Wi-Fi library [32], but it is
possible to use any other such library with minimal effort.

When reporting, the MN generates a report in XML, 7 then signs the package
with Boneh’s short group signatures using a modified version of Stanford’s
PBC sig library (version 0.0.2, using the included d159 pairing parameters).
We used the Mixmaster utility (version 3.0rc1, slightly modified) to prepare a
MIX message and send it using libsmtp.

Finally, we note that our AnonySense implementation has been successfully
used by another research group, who integrated it with their system [33].

5.2 Applications

To demonstrate AnonySense operation, we implemented two simple applica-
tions. Each uses the network interfaces of the N800 as sensors. 8 Although
these are just two applications, AnonySense is designed and able to support a
broad range of application types.

Application RogueFinder. The RogueFinder application is used to detect
rogue APs in a given area. To do so, RogueFinder tasks the AnonySense
system to report all APs visible to the MNs. The sensor in this case is the
MN’s Wi-Fi interface; the interface sends a probe request on every Wi-Fi chan-
nel and listens for probe responses from APs. After collecting the reports,
RogueFinder then checks the list of APs reported against a list of known
deployed APs to determine which are rogues. When a rogue AP is detected,
RogueFinder can display a marker on a map that is the approximate lo-
cation of the rogue AP. Using mobile MNs, RogueFinder can potentially
detect rogues where static sensors may not see them.

Application ObjectFinder. Our inspiration for ObjectFinder comes from
a similar application described earlier [8]. If a person loses one of their Blue-
tooth devices, they can use ObjectFinder to task AnonySense to find a
specific Bluetooth MAC address. When an MN detects the specified MAC ad-
dress, it then reports the current location. The App is then able to mark on a
map where the Bluetooth-enabled object was detected. Although the position-
ing may be crude, one could easily imagine ObjectFinder being extended
to include other information such as signal strength, so triangulation might
be used for more accurate object positioning.

7 We use XML for reports because (unlike with AnonyTL) we have no special
requirements for the report format. It needs to be able to encode key/value pairs
for sensed values, and XML is a well-recognized standard for that purpose.
8 We have also written similar applications that use the N800’s microphone for
sound-level measurements, but we do not include the results in this paper.
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5.3 Experimental results

Our tests were conducted in the Dartmouth Computer Science building, with
around 60 distinct Wi-Fi BSSIDs visible from the testing station, and around
3–7 discoverable Bluetooth devices in the vicinity.

Methods. We ran the RogueFinder application with a single Nokia N800
registered with the AnonySense system. We measured the CPU time by log-
ging timestamps between different operations. Data transfer between the MN
and servers was captured by WireShark and analyzed by tcptrace to extract
statistics of TCP flows of interest. We measured the energy consumption of the
device by measuring the voltage between the battery and the device across a
test resistance of 0.5 Ω using an Agilent 34401A multi-meter. The net energy
consumption of AnonySense was computed by subtracting the base energy
use (i.e., no application was running) from the energy use when AnonySense
was running. 9 We found that measurement results for RogueFinder in this
section are similar to the ObjectFinder application, except that the cost of
the Wi-Fi scan is replaced with that of a Bluetooth scan.

Overall results. During one walk around our building with an MN for several
minutes, the MN detected 84 unique APs, of which RogueFinder deter-
mined 12 to be rogues, that is, not part of the official campus infrastructure.
We then conducted controlled experiments in the lab to measure resource con-
sumption; in what follows, each measurement is the average of 50 repetitions
unless indicated otherwise. It took 14.5 seconds on average for the MN to per-
form one scan and issue a report. In our experiment, the average power cost
was 495 mW and a complete scan-report cycle cost 7.44 Joules on average.
As a rough benchmark, this power consumption was 17 times smaller than
streaming a song in MP3-quality on the N800. Since the MN downloads a
batch of tasks, we measured the cost of downloading 1000 tasks of the same
length as RogueFinder. In our experiment, the average power consumption
for downloading 1000 tasks was 2.23 Joule. The time for downloading tasks
depends on the bandwidth of the wireless connection. In our experiment, it
took 8.2 seconds to download 1000 tasks with a bandwidth of 113 Kbps.

Benchmarking. Table 1 illustrates how the energy cost of RogueFinder com-
pares with the cost of various multimedia applications to give an intuitive sense
of the magnitude of energy consumption in AnonySense. For example, the en-
ergy consumed by one cycle of RogueFinder is equivalent to the energy
consumed by playing a local MP3 file for 26.1 seconds. We also note that the
power consumption by RogueFinder is similar to that of streaming radio
(in 33 kbps quality). In a separate experiment, we found that RogueFinder
had a minimal effect on the overall battery lifetime of a fully charged N800: in
one experiment, RogueFinder reduced battery lifetime from 279 to 262 min-

9 These numbers differ from our conference paper [34], where we made errors in the
calculation of the energy measurements. These tables provide correct measurements.
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Table 1
Jobs equivalent to one cycle of a RogueFinder task (7.44 Joule)

Application Power Job

Local MP3 play 284.6 mW 26.1 s

Streaming Radio 377.2 mW 19.7 s

Streaming MP3 524.0 mW 14.2 s

Local Video play 636.6 mW 11.7 s

Streaming Video 820.2 mW 9.1 s

Download 955.5 mW 7.8 s

Table 2
Energy cost of task sub-operations

Operation Time Power Energy Fraction

Wi-Fi Sensing 7.2 s 525.2 mW 3.78 J 50.8 %

Group Signing 5.2 s 530.5 mW 2.76 J 37.1 %

Reporting 2.1 s 429.7 mW 0.90 J 12.1 %

RSA Signing 0.02 s 350.4 mW 0.008 J

BT Sensing 10.7 s 280.5 mW 3.03 J

utes (by 6.1%), and in another experiment, it reduced battery lifetime from
291 minutes to 278 minutes (by 4.5%). 10 In this experiment we simulated a
network-heavy usage scenario by playing streaming audio continuously while
downloading 20 emails per hour. The scanning operation was also heavy; one
RogueFinder cycle per minute.

Detailed energy consumption. One sensing task can be divided into several sub-
operations: sensing (Wi-Fi scanning for RogueFinder or Bluetooth scan-
ning for ObjectFinder), signing (Group signing for insensitive data or RSA
signing for sensitive data), and reporting. Table 2 shows the cost of each sub-
operation. The energy fraction of each sub-operation is with respect to the
total cost of RogueFinder using group signatures. As shown in the table,
the sensing took the most time (about 50%) and energy (50.8%). The next
most expensive operation was computing group signatures of reports. How-
ever, when RSA signature was used, i.e., for sending reports to the AS for
anonymizing the data, the signing cost was negligible.

10 Due to the length of battery-lifetime experiments, it was not feasible to run more
than two times.
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6 Discussion

In this section we discuss subtle issues of our design or implementation.

Delay tolerance. We make use of a MIX to allow clients to upload reports
efficiently in a single network connection, while maintaining the unlinkability
of reports. As a consequence, reports arrive at the RS after being delayed by
the MIX. The amount of delay depends on the population of MIX users and
the message flow rate. Current deployments of Mixmaster show that messages
can arrive in a few minutes, or may take hours. In general, as the number of
messages passing through the MIX increases, the latency goes down because
the MIX queue fills up faster. Thus, as more carriers join AnonySense and
report, the latency of reports will go down. If the application is sensitive
to delay, and needs low-latency reports, nodes could rotate their MAC and
IP addresses before sending each report directly to the RS. Given a queue
of reports, however, changing the MAC address for each report could take
time. When the report is sent to the AS, the MIX delay is replaced with the
delay imposed by the AS, during which it aggregates or mixes the report with
other reports for anonymity or trace confusion. We believe, therefore, that
AnonySense is best suited to delay-tolerant applications.

Wi-Fi vs. cellular networks. An alternative to the AnonySense architecture
would be to rely on cellular-phone service providers to track carriers at all
times (as they already do), and route tasks and reports through the cel-
lular network. We believe, however, in an architecture that preserves carri-
ers’ privacy without placing as much trust in the provider. (There have been
cases where U.S. providers have handed over sensitive data about users with-
out a subpoena [35].) AnonySense, like CarTel [1], leverages the growth of
open-access Wi-Fi networks, and AnonySense is designed to ensure carriers’
anonymity while contributing sensing data for community use.

Other applications. There are many exciting possible applications for a system
like AnonySense. We mention a few here, some of which have been imagined
or even prototyped by others.

A small modification to RogueFinder could map both 802.11 coverage and
quality around campus. We implemented a QuietFinder, which maps the
sound levels around campus. The task is just like RogueFinder, except using
the N800’s microphone as a sound-level sensor.

For runners or bikers [36], one could use an accelerometer and GPS to detect
running or biking activity and have an application identify the popular routes
and their difficulty. Variant: use an outboard Bluetooth sensor (such as pulse
or respiration) to sense physical exertion. Or, contribute location data from
bikers toward a street map of the world [37].

One could task mobile nodes to send images or video from locations of interest;
one set of researchers uses peer-to-peer communications for nearby cellphones
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to coordinate video capture and analysis [38]. (We have concerns about privacy
from any image-based tasks, however!)

Suppose public infrastructure (such as street lamps, parking meters, fire hy-
drants) were instrumented to transmit beacons (or respond to probes) when
they need service. Then tasks could report the location and serial number of
the broken object; as long as the timestamp is blurred (e.g., reporting the date
but not time) the carrier’s location privacy would be reasonably preserved.

For public safety, consider MNs with radiation detectors. In addition to a
local application that informs the carrier about their own personal exposure
to radiation, tasks can provide health officials information about when and
where radiation is detected, enabling better tracking of a plume resulting
from a dirty bomb.

There are many potential opportunities related to wellness or health care [39],
social networks [40,41], city dynamics [42], traffic monitoring [43], and other
applications [1–3,5–7].

Finally, the COPSE project at Duke University has integrated the AnonySense
system into their code base and they are developing applications [33].

7 Summary

We present AnonySense, a comprehensive system aimed at preserving the
privacy of users in opportunistic-sensing environments. AnonySense allows a
variety of applications to request sensor data using a flexible tasking language,
and later receive the sensor data from personal mobile devices. Data is col-
lected in an opportunistic and delay-tolerant manner, in which a large and
dynamic set of mobile nodes can volunteer to accept tasks and send back re-
ports, both reliably and anonymously. AnonySense can optionally identify the
user submitting the task, the carrier to be tasked, or the carrier submitting
the report; the application decides which form(s) of identification are needed,
but the mobile-device carrier decides whether to accept such tasks.

We implemented and evaluated our system in the context of two applications,
ObjectFinder and RogueFinder, and our results show that sensor data
can be reliably obtained, from anonymous users, without much overhead. We
believe a privacy-aware architecture will make opportunistic sensing infras-
tructures more acceptable, since users will see little risk to their privacy by
participating in applications that provide them with indirect benefits.
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